The simplified modified Camassa-Holm (SMCH) equation is an important nonlinear model equation for identifying various wave phenomena in ocean engineering and science. The new auxiliary equation (NAE) method has been a...The simplified modified Camassa-Holm (SMCH) equation is an important nonlinear model equation for identifying various wave phenomena in ocean engineering and science. The new auxiliary equation (NAE) method has been applied to the SMCH equation. Base on the method, we have obtained some novel an- alytical solutions such as hyperbolic, trigonometric, exponential, and rational function solutions of the SMCH equation. For appropriate values of parameters, three dimensional (3D) and two dimensional (2D) graphs are designed by Mathematica. The stability of the model is also discussed in this manuscript. The dynamic and physical behaviors of the solutions derived from the SMCH equation have been ex- tensively discussed by these plots. All our solutions are indispensable for understanding the nonlinear phenomena of dispersive waves that are important in ocean engineering and science. In addition, our results are essential to clarify the various oceanographic applications containing ocean gravity waves, offshore rig in water, energy associated with a moving ocean wave and numerous other related phenom- ena. Finally, the obtained solutions are helpful for studying wave interactions in many new structures and high-dimensional models.展开更多
文摘The simplified modified Camassa-Holm (SMCH) equation is an important nonlinear model equation for identifying various wave phenomena in ocean engineering and science. The new auxiliary equation (NAE) method has been applied to the SMCH equation. Base on the method, we have obtained some novel an- alytical solutions such as hyperbolic, trigonometric, exponential, and rational function solutions of the SMCH equation. For appropriate values of parameters, three dimensional (3D) and two dimensional (2D) graphs are designed by Mathematica. The stability of the model is also discussed in this manuscript. The dynamic and physical behaviors of the solutions derived from the SMCH equation have been ex- tensively discussed by these plots. All our solutions are indispensable for understanding the nonlinear phenomena of dispersive waves that are important in ocean engineering and science. In addition, our results are essential to clarify the various oceanographic applications containing ocean gravity waves, offshore rig in water, energy associated with a moving ocean wave and numerous other related phenom- ena. Finally, the obtained solutions are helpful for studying wave interactions in many new structures and high-dimensional models.