期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Nb Alloying on Nano-Crystallization Kinetics of Fe_(55-x)Cr_(18)Mo_7B_(16)C_4Nb_x(x=0, 3) Bulk Amorphous Alloys 被引量:3
1
作者 s. ahmadi H.R. shahverdi s.s. saremi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第8期735-740,共6页
Crystallization kinetics of Fe55-xCrzsMo7B10C4Nbx(x= 0, 3) bulk amorphous alloys were analyzed using X-ray diffraction and differential scanning; calorimetric (DSC) tests. In practice, crystallization and growth m... Crystallization kinetics of Fe55-xCrzsMo7B10C4Nbx(x= 0, 3) bulk amorphous alloys were analyzed using X-ray diffraction and differential scanning; calorimetric (DSC) tests. In practice, crystallization and growth mechanism were evaluated using DSC tests at four different heating rates (10, 20, 30, and 40 K/rain) and kinetic models. Two-step crystallization behavior was observed when Fe55Cr18MOTB16C4 and Fe52Cr18MoTB16C4Nb3 bulk amorphous alloys were annealed, where Fe36Cr12M010 phase was crystallized in the first step of crystallization. Results show that Fe36Cr12Mo10 and Fe3C phases were crystallized in the structures of the alloys after further annealing: process. Activation energy for the crystallization of Fe36Cr12Mozo phase was measured to be 543 kJ/mol in Fe52Cr18MoTB16C4Nb3 alloy and 375 kJ/mol for Fe55Cr18Mo7B16C4 alloy according to Kissinger-Starink model. Moreover, a two-dimensiona nucleation rate was found in Fe52Cr18Mo7B16C4Nb3 diffusion controlled growth mechanism with decreasing alloy whereas a three-dimensional diffusion controlled growth mechanism with decreasing nucleation rate was found in crystallization of Fe36Crz2Mo10 phase during annealing of Fe55Cr18MoTB16C4 alloy. TEM (transmission electron microscopy) observations reveal that crystalline Fe36Cr12M010 phase nucleated in the structures of the alloys in an average size of 10 nm with completely mottled morphology. 展开更多
关键词 Avrami exponent CRYSTALLIZATION Kinetic models Growth mechanisms Bulk amorphous alloys
原文传递
Nanocrystallization of α-Fe Crystals in Fe_(52)Cr_(18)Mo_7B_(16)C_4Nb_3 Bulk Amorphous Alloy 被引量:2
2
作者 s. ahmadi H.R. shahverdi s.s. saremi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第6期497-502,共6页
Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated by X-ray diffraction(XRD),differential scanning calorimetric(DSC) tests and transmission electron microscopy(TEM) observations in this research... Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated by X-ray diffraction(XRD),differential scanning calorimetric(DSC) tests and transmission electron microscopy(TEM) observations in this research work.In effect,crystallization and growth mechanism were investigated by using DSC tests at four different heating rates(10,20,30,40 K/min).Results showed that a two-step crystallization process occurred in the alloy in which α-Fe and Fe3B phases were crystallized,respectively in the structure after heat treatment.Activation energy for the first step of crystallization,i.e.α-Fe was measured to be 421 and 442 kJ/mol according to Kissinger-Starink and Ozawa models,respectively.Further,Avrami exponent calculated from DSC curves was 1.6 and a two-dimensional diffusion controlled growth mechanism with decreasing nucleation rate was observed in the alloy.Moreover,it was known from the TEM observations that crystalline α-Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology. 展开更多
关键词 Bulk metallic glasses (BMGs) Structural amorphous steels (SASs) Avrami exponent Crystallization and kinetic models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部