The effects of electric field and ultrasonication on the deposition and alignment of single-walled carbon nanotubes (SWCNTs) across a 10 μm electrode gap have been studied. It was found that a frequency of ~1 MHz of ...The effects of electric field and ultrasonication on the deposition and alignment of single-walled carbon nanotubes (SWCNTs) across a 10 μm electrode gap have been studied. It was found that a frequency of ~1 MHz of the applied field yields the largest current independent of the magnitude of the voltage or the ultrasonication time of the sample. Increasing the ultrasonication time of a SWCNT solution changes the I-V characteristics of the deposited nanotubes from linear to nonlinear for all the voltages and frequencies of the applied field. Even in the absence of an electric field, SWCNTs bridged the electrode gap up to a critical sonication time which depends on the concentration of nanotubes in the solution.展开更多
文摘The effects of electric field and ultrasonication on the deposition and alignment of single-walled carbon nanotubes (SWCNTs) across a 10 μm electrode gap have been studied. It was found that a frequency of ~1 MHz of the applied field yields the largest current independent of the magnitude of the voltage or the ultrasonication time of the sample. Increasing the ultrasonication time of a SWCNT solution changes the I-V characteristics of the deposited nanotubes from linear to nonlinear for all the voltages and frequencies of the applied field. Even in the absence of an electric field, SWCNTs bridged the electrode gap up to a critical sonication time which depends on the concentration of nanotubes in the solution.