Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06 ≤ x ≤ 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature ...Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06 ≤ x ≤ 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature (15-350 K). Within the experimental error, the electron concentration in Inx Ga1-x N alloys is independent of temperature while the resistivity decreases as the temperature increases. Therefore, Inx Ga1-xN (0.06 ≤ x ≤0.135) alloys are considered in the metallic phase near the Mort transition. It has been shown that the temperaturedependent metallic conductivity can be well explained by the Mort model that takes into account electron-electron interactions and weak localization effects.展开更多
文摘Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06 ≤ x ≤ 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature (15-350 K). Within the experimental error, the electron concentration in Inx Ga1-x N alloys is independent of temperature while the resistivity decreases as the temperature increases. Therefore, Inx Ga1-xN (0.06 ≤ x ≤0.135) alloys are considered in the metallic phase near the Mort transition. It has been shown that the temperaturedependent metallic conductivity can be well explained by the Mort model that takes into account electron-electron interactions and weak localization effects.