The triple differential cross-sections of First Born approximation have been calculated for ionization of metastable 2P-state hydrogen atoms by electron impact in the asymmetric coplanar geometry. In this study a mult...The triple differential cross-sections of First Born approximation have been calculated for ionization of metastable 2P-state hydrogen atoms by electron impact in the asymmetric coplanar geometry. In this study a multiple scattering theory of ionization of hydrogen atoms is used. The latest results of the present method are compared with other calculations. It will be added for new experimental study of ionization of hydrogen atoms in their metastable states.展开更多
In this paper we introduce a formal theory on unveiling relativistic effects during electron emission from clean metallic surfaces upon high charged particle impact using a Jellium-type wave function including suitabl...In this paper we introduce a formal theory on unveiling relativistic effects during electron emission from clean metallic surfaces upon high charged particle impact using a Jellium-type wave function including suitable spinors. In addition image charge final state electron surface interactions have been initiated in the relativistic region as well as the scattering of the projectile from the multi-center bulk potential. Finally, a semi-relativistic condition is considered in place of the ionization mechanism of scattering from an aluminium semi-infinite solid target by non-relativistic electrons to determine multiple differential cross-section.展开更多
文摘The triple differential cross-sections of First Born approximation have been calculated for ionization of metastable 2P-state hydrogen atoms by electron impact in the asymmetric coplanar geometry. In this study a multiple scattering theory of ionization of hydrogen atoms is used. The latest results of the present method are compared with other calculations. It will be added for new experimental study of ionization of hydrogen atoms in their metastable states.
文摘In this paper we introduce a formal theory on unveiling relativistic effects during electron emission from clean metallic surfaces upon high charged particle impact using a Jellium-type wave function including suitable spinors. In addition image charge final state electron surface interactions have been initiated in the relativistic region as well as the scattering of the projectile from the multi-center bulk potential. Finally, a semi-relativistic condition is considered in place of the ionization mechanism of scattering from an aluminium semi-infinite solid target by non-relativistic electrons to determine multiple differential cross-section.