The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered and the problem is assumed to be two-dimensional. The results...The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered and the problem is assumed to be two-dimensional. The results of symmetric and asymmetric impacts are compared. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle of 10 degrees becomes about 95% more than that of the symmetric entry. The result of the present work proves the importance of asymmetrical hydrodynamic impact loading for structural design of a ship. Besides, the numerical procedure is not limited to a wedge type cross section and it is possible to apply it for any real geometry of ships and high-speed craft.展开更多
文摘The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered and the problem is assumed to be two-dimensional. The results of symmetric and asymmetric impacts are compared. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle of 10 degrees becomes about 95% more than that of the symmetric entry. The result of the present work proves the importance of asymmetrical hydrodynamic impact loading for structural design of a ship. Besides, the numerical procedure is not limited to a wedge type cross section and it is possible to apply it for any real geometry of ships and high-speed craft.