期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
1
作者 s. p. flego Angelo plastino A. R. plastino 《Journal of Modern Physics》 2011年第11期1390-1396,共7页
It is well known that a suggestive connection links Schr?dinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence... It is well known that a suggestive connection links Schr?dinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial differential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schr?dinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our present procedure does not involve free fitting parameters. 展开更多
关键词 INFORMATION Theory Fisher’s INFORMATION Measure LEGENDRE Transform QUARTIC ANHARMONIC Oscillator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部