The paper presents experimental and theoretical studies of non-thermal plasma assisted reforming of liquid ethanol into hydrogen-rich syngas in dynamic plasma-liquid systems (PLS) using electric DC and pulsed discha...The paper presents experimental and theoretical studies of non-thermal plasma assisted reforming of liquid ethanol into hydrogen-rich syngas in dynamic plasma-liquid systems (PLS) using electric DC and pulsed discharges in a gas channel with liquid wall (DGCLW) and DC discharge in a reverse vortex gas flow of Tornado type with "liquid" electrode (TORNADO-LE). Results of experiments show the energy efficiency of plasma-chemical conversion of ethanol in studied systems. Results of model calculations explain the kinetic mechanism of non-equilibrium plasma-chemical transformations in different conditions. The proposed technique of plasma-fuel reforming can be used in alternative biofuels combustion technologies in advanced diesel engines and power plants.展开更多
文摘The paper presents experimental and theoretical studies of non-thermal plasma assisted reforming of liquid ethanol into hydrogen-rich syngas in dynamic plasma-liquid systems (PLS) using electric DC and pulsed discharges in a gas channel with liquid wall (DGCLW) and DC discharge in a reverse vortex gas flow of Tornado type with "liquid" electrode (TORNADO-LE). Results of experiments show the energy efficiency of plasma-chemical conversion of ethanol in studied systems. Results of model calculations explain the kinetic mechanism of non-equilibrium plasma-chemical transformations in different conditions. The proposed technique of plasma-fuel reforming can be used in alternative biofuels combustion technologies in advanced diesel engines and power plants.