期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment 被引量:6
1
作者 s.c.han L.H.Wu +8 位作者 C.Y.Jiang N.Li C.L.Jia P.Xue H.Zhang H.B.Zhao D.R.Ni B.L.Xiao Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期103-114,共12页
Strong metal/non-polar plastic dissimilar joints are highly demanded for the lightweight design in many fields,which,however,are rather challenging to achieve directly via welding.In this study,we designed a laser pro... Strong metal/non-polar plastic dissimilar joints are highly demanded for the lightweight design in many fields,which,however,are rather challenging to achieve directly via welding.In this study,we designed a laser processing pretreatment on the Al alloy to create a deep porous Al surface structure,which was successfully joined to the polypropylene(PP) via friction spot welding.A maximum joint strength of29 MPa was achieved,the same as that of the base PP(i.e.the joint efficiency reached 100%),much larger than ever reported.The joining mechanism of the Al alloy and the PP was mainly attributed to the large mechanical interlocking effect between the laser processed Al porous structure and the re-solidified PP and the formation of chemical bond at the interface.The deep porous Al surface structure modified by laser processing largely changed the Al-PP reaction feature.The evidence of the C-O-Al chemical bond was first time found at the non-polar plastic/Al joint interface,which was the reaction result between the oxide on the Al alloy surface and thermal oxidization products of the PP during welding.This study provides a new way for enhancing metal-plastic joints via surface laser treatment techniques. 展开更多
关键词 Friction stir welding Hybrid joint Metal Polymer Surface treatment Interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部