The time domain approach, i.e. Autoregressive (AR) processes, of time series analysis is applied to the monsoon rainfall series of India and its two major regions, viz. North-West India and Central India. Since the or...The time domain approach, i.e. Autoregressive (AR) processes, of time series analysis is applied to the monsoon rainfall series of India and its two major regions, viz. North-West India and Central India. Since the original time series shows no modelable structure due to the presence of high interannual variability, a 3-point running filter is applied before exploring and fitting appropriate stochastic models. Out of several parsimonious models fitted, AR(3) is found to be most suitable. The usefulness of this fitted model is validted on an independent datum of 18 years and some skill has been noted. These models therefore can be used for low skill higher lead time forecasts of monsoon. Further the forecasts produced through such models can be combined with other forecasts to increase the skill of monsoon forecasts.展开更多
文摘The time domain approach, i.e. Autoregressive (AR) processes, of time series analysis is applied to the monsoon rainfall series of India and its two major regions, viz. North-West India and Central India. Since the original time series shows no modelable structure due to the presence of high interannual variability, a 3-point running filter is applied before exploring and fitting appropriate stochastic models. Out of several parsimonious models fitted, AR(3) is found to be most suitable. The usefulness of this fitted model is validted on an independent datum of 18 years and some skill has been noted. These models therefore can be used for low skill higher lead time forecasts of monsoon. Further the forecasts produced through such models can be combined with other forecasts to increase the skill of monsoon forecasts.