Hydrogels have been synthesized from 10%, 20%, 30%, 40%, 50% and 60% aqueous solutions of acrylamide monomer by gamma radiation employing doses in the range of 0.2-30 kGy from a Co-60 source. The effect of solution co...Hydrogels have been synthesized from 10%, 20%, 30%, 40%, 50% and 60% aqueous solutions of acrylamide monomer by gamma radiation employing doses in the range of 0.2-30 kGy from a Co-60 source. The effect of solution concentration, γ-ray dose, pH and time was studied in order to observe the optimizing conditions in the characterization of hydrogels. Gel fraction increases with dose for all concentrations indicating hundred-percentage conversion of gel at doses 5 kGy for homogenous solutions in the range of 20%-50% concentration. On the other hand, 10% solution provides conversion less than 86% even at 30 kGy, whereas 60% monomer makes an inhomogeneous solution which stile gives about 100% gel fraction. Swelling of hydrogels under water with respect to time varies with both the doses and concentrations due to the change of crosslinking density in the gels. The maximum volume change of hydrogels during swelling and water desorption mainly occurs within 24 h. Swelling is also enhanced with the rise of pH due to change of ionic content of the solvent. Considering the amount of gel fraction and the properties of hydrogel, the samples prepared from 20% solution at 5 kGy show better results. Moreover, the effect of bacteria on hydrogel was found to be nil, suggesting a prohibition of growth of microorganism in it.展开更多
文摘Hydrogels have been synthesized from 10%, 20%, 30%, 40%, 50% and 60% aqueous solutions of acrylamide monomer by gamma radiation employing doses in the range of 0.2-30 kGy from a Co-60 source. The effect of solution concentration, γ-ray dose, pH and time was studied in order to observe the optimizing conditions in the characterization of hydrogels. Gel fraction increases with dose for all concentrations indicating hundred-percentage conversion of gel at doses 5 kGy for homogenous solutions in the range of 20%-50% concentration. On the other hand, 10% solution provides conversion less than 86% even at 30 kGy, whereas 60% monomer makes an inhomogeneous solution which stile gives about 100% gel fraction. Swelling of hydrogels under water with respect to time varies with both the doses and concentrations due to the change of crosslinking density in the gels. The maximum volume change of hydrogels during swelling and water desorption mainly occurs within 24 h. Swelling is also enhanced with the rise of pH due to change of ionic content of the solvent. Considering the amount of gel fraction and the properties of hydrogel, the samples prepared from 20% solution at 5 kGy show better results. Moreover, the effect of bacteria on hydrogel was found to be nil, suggesting a prohibition of growth of microorganism in it.