Drift deposits and Triassic Sandstone of the Bromsgrove and Wildmoor Formations, 700m thick, form the main aquifers at Four Ashes. The coal tar and products from early plant and tank storage facilities constructed ove...Drift deposits and Triassic Sandstone of the Bromsgrove and Wildmoor Formations, 700m thick, form the main aquifers at Four Ashes. The coal tar and products from early plant and tank storage facilities constructed over unprotected ground directly and indirectly caused significant groundwater pollution. The organic pollutants include phenol, cresol, and xylenol. The maximum phenol concentration in the groundwater reached 12000mg/L, with an average of 1300mg/L, which accounts for 40%60% of the total organic contaminants. Three computer codes, Visual Modflow, MT3D, and BioRedox, which solute transport model to groundwater flow were used to simulate and predict the distribution, transport, and degradation of phenol in the polluted groundwater. Over about 46 years, the phenol moved from the pollutant source to the plume front and it will take 220 years to reach the main pumping wells. The BioRebox model was used to simulate the aerobic, sulfidogenic, nitrate reducing, ferrogenic, manganogenic, and methanogenic zones. The residual mass in the groundwater will decrease from 1600 t to 400 t by the year 2080, with 80% of total phenol eventually lost with maximum concentration declining from 15000mg/L to 2000mg/L.展开更多
文摘Drift deposits and Triassic Sandstone of the Bromsgrove and Wildmoor Formations, 700m thick, form the main aquifers at Four Ashes. The coal tar and products from early plant and tank storage facilities constructed over unprotected ground directly and indirectly caused significant groundwater pollution. The organic pollutants include phenol, cresol, and xylenol. The maximum phenol concentration in the groundwater reached 12000mg/L, with an average of 1300mg/L, which accounts for 40%60% of the total organic contaminants. Three computer codes, Visual Modflow, MT3D, and BioRedox, which solute transport model to groundwater flow were used to simulate and predict the distribution, transport, and degradation of phenol in the polluted groundwater. Over about 46 years, the phenol moved from the pollutant source to the plume front and it will take 220 years to reach the main pumping wells. The BioRebox model was used to simulate the aerobic, sulfidogenic, nitrate reducing, ferrogenic, manganogenic, and methanogenic zones. The residual mass in the groundwater will decrease from 1600 t to 400 t by the year 2080, with 80% of total phenol eventually lost with maximum concentration declining from 15000mg/L to 2000mg/L.