In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage ...In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamicsmodels, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, bothbremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered forstudying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions frombremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatteringsbecome dominant over bremsstrahlung is also outlined.展开更多
We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,c...We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,cutoff energy,and beam spot of protons in the experiments,and these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties.It is found that with a laser intensity of 8×10^(19) W/cm^(2),target normal sheath acceleration is the dominant mechanism for both types of target.For a plastic target,the higher charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams,and the larger divergence angle of the protons is due to the deflection of hot electrons during transport in the targets.We also find that the energy loss of hot electrons in targets of different thickness has a significant effect on the proton cutoff energy.The consistent results obtained here further narrow the gap between simulations and experiments.展开更多
The study of structure of few-electron heavy ions is of important interest due to the strong field effects. Helium-like ions are the simplest atomic multi-body systems. A considerable improved precision has been made ...The study of structure of few-electron heavy ions is of important interest due to the strong field effects. Helium-like ions are the simplest atomic multi-body systems. A considerable improved precision has been made in both theory and experiments recently. The experiment exploits the radiative recombination (RR) transitions into the vacant 1 s shell of bare and H-like ions. In this process, the energy carried by the emitted photon is the energy difference between the initial and final electron state, hω=Ekin+EB. For bare展开更多
A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying leve...A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying levels have been calculated,and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.展开更多
基金This work was supported by Science Challenge Project(No.TZ2016005)National Natural Science Foundation of China(No.11605269,11674341 and 11675245)National Basic Research Program of China(Grant No.2013CBA01504).
文摘In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newlydeveloped particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamicsmodels, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, bothbremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered forstudying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions frombremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatteringsbecome dominant over bremsstrahlung is also outlined.
基金The simulations were performed on the Qilin-2 supercomputer at Zhejiang University.This work was supported by the Science Challenge Project(No.TZ2016005)the National Natural Science Foundation of China(Grant Nos.119210067,11605269,11721091,11775144)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404).
文摘We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,cutoff energy,and beam spot of protons in the experiments,and these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties.It is found that with a laser intensity of 8×10^(19) W/cm^(2),target normal sheath acceleration is the dominant mechanism for both types of target.For a plastic target,the higher charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams,and the larger divergence angle of the protons is due to the deflection of hot electrons during transport in the targets.We also find that the energy loss of hot electrons in targets of different thickness has a significant effect on the proton cutoff energy.The consistent results obtained here further narrow the gap between simulations and experiments.
文摘The study of structure of few-electron heavy ions is of important interest due to the strong field effects. Helium-like ions are the simplest atomic multi-body systems. A considerable improved precision has been made in both theory and experiments recently. The experiment exploits the radiative recombination (RR) transitions into the vacant 1 s shell of bare and H-like ions. In this process, the energy carried by the emitted photon is the energy difference between the initial and final electron state, hω=Ekin+EB. For bare
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10376026 and 10434100)the Foundation of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhouthe China/Ireland Science and Technology Collaboration Research Fund (No. CI-2004-07)
文摘A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying levels have been calculated,and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.