In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density function...In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as im- plemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermody- namic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.展开更多
文摘In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as im- plemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermody- namic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.