期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Impact strength and structural refinement of A380 aluminum alloy produced through gas-induced semi-solid process and Sr addition 被引量:1
1
作者 M.HONARMAND M.SALEHI +1 位作者 s.g.shabestari H.SAGHAFIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1405-1415,共11页
Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid(GISS)process.The effects of argon inert gas flow rate,starting temperature and duration of gas purging as key GISS parameters and al... Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid(GISS)process.The effects of argon inert gas flow rate,starting temperature and duration of gas purging as key GISS parameters and also modification with Sr on the structural refinements,hardness and impact strength of GISS alloys were investigated.Microstructural evolution shows that there is an important effect of the pouring temperature and Sr addition on the morphology and size of primaryα(A1)in the alloy to change from coarse dendritic to fine globular structure.The best sample which has fine grains of 51.18μm in average size and a high level of globularity of 0.89 is achieved from a GISS processing of Sr modified alloy in which the gas purging started at 610℃.The impact strength of the GISS optimized samples((4.67±0.18)J/cm^(2))shows an increase of about 40%with respect to the as-cast sample due to the globular structure and fibrous Si morphology.Moreover,the hardness of the optimized GISS sample((89.34±2.85)HB)increases to(93.84±3.14)HB by modification with the Sr and GISS process.The fracture surface of Sr modified alloy is also dominated by complex topography showing typical ductile fracture features. 展开更多
关键词 gas-induced semi-solid process impact strength A380 aluminium alloy globular structure modification
下载PDF
Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy 被引量:9
2
作者 M.AMNE ELAHI s.g.shabestari 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期956-965,共10页
The microstructure and impact behavior of A356 aluminum alloy were studied after melt treatment processes of grain refinement and modification under both non-heat treated and T6 heat treated conditions. The modificati... The microstructure and impact behavior of A356 aluminum alloy were studied after melt treatment processes of grain refinement and modification under both non-heat treated and T6 heat treated conditions. The modification and grain refinement were done with the addition of Al-10%Sr and Al-5Ti-1B master alloys, respectively. All casting parameters were kept constant in order to focus on the influence of mentioned treatments. The results indicate that the eutectic silicon morphology is the main parameter to control the impact behavior of alloy. Consequently, the individual grain refinement of as-cast alloy does not improve the impact toughness as the modification does. While, simultaneous grain refinement and modification provide higher impact toughness in comparison with individual treatments. T6 heat treatment of the alloy improves the impact toughness under all melt-treated conditions. This is related to the further modification of eutectic silicon particles. To verify the results and clarify the mechanisms, three-point bending test and fractography were used to interpret the improvement of impact toughness of the alloy. 展开更多
关键词 A356 aluminum alloy MODIFICATION grain refinement impact toughness
下载PDF
Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy 被引量:4
3
作者 M.H.GHONCHEH s.g.shabestari +1 位作者 A.ASGARI M.KARIMZADEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期848-857,共10页
Two theoretical criteria represented by Katgerman, and Clyne and Davies for prognosticating hot tearing sensitivity were compared. Both unrefined and grain-refined samples of Al2024 alloy were solidified at various co... Two theoretical criteria represented by Katgerman, and Clyne and Davies for prognosticating hot tearing sensitivity were compared. Both unrefined and grain-refined samples of Al2024 alloy were solidified at various cooling rates ranging from 0.4 to 17.5 °C/s. Thermal analysis was used to detect dendrite coherency point and temperature of eutectic reaction. Curves of solid and liquid fractions were plotted based on Newtonian method to determine hot tearing susceptible areas. The experimental results show that the most susceptible zone in which hot tearing can occur in Al2024 is where Al_2CuMg intermetallic compound forms as a eutectic phase at last stage of mushy-state interval. Also, both criteria are in a good agreement with each other at high cooling rates used in direct-chill casting process while Clyne and Davies' model is more acceptable to determine hot tearing tendency from low to medium cooling rates. 展开更多
关键词 2024 aluminum alloy dendrite coherency direct-chill casting thermal analysis hot tearing
下载PDF
Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix composite 被引量:5
4
作者 M.R.Rezaei s.g.shabestari S.H.Razavi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第9期1031-1038,共8页
Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just b... Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just below the first crystallization temperature of metallic glass on the consolidation of composites were investigated in terms of the relative densities, structural evolutions and mechanical properties of composites. Some intermetallic compounds included Al;CuTi;, Al;Ti and Al;Cu;precipitated from metallic glass particles at consolidation temperature of 300?C. Consolidation temperature did not affect the matrix grains size of the composite. Quantitative analysis revealed that the distribution of reinforcing particles was considerably dependent on consolidation temperature. Density of the composite was increased by increasing the consolidation temperature to 250?C. The composite consolidated at250?C through ECAP process, exhibited the best combination of yield strength and ductility of 184 MPa and 48%, respectively. 展开更多
关键词 Al matrix composite(AMC) Equal channel angular pressing(ECAP) Consolidation temperature Glass particles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部