Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just b...Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just below the first crystallization temperature of metallic glass on the consolidation of composites were investigated in terms of the relative densities, structural evolutions and mechanical properties of composites. Some intermetallic compounds included Al;CuTi;, Al;Ti and Al;Cu;precipitated from metallic glass particles at consolidation temperature of 300?C. Consolidation temperature did not affect the matrix grains size of the composite. Quantitative analysis revealed that the distribution of reinforcing particles was considerably dependent on consolidation temperature. Density of the composite was increased by increasing the consolidation temperature to 250?C. The composite consolidated at250?C through ECAP process, exhibited the best combination of yield strength and ductility of 184 MPa and 48%, respectively.展开更多
基金the support of Iran National Science Foundation(INSF)
文摘Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just below the first crystallization temperature of metallic glass on the consolidation of composites were investigated in terms of the relative densities, structural evolutions and mechanical properties of composites. Some intermetallic compounds included Al;CuTi;, Al;Ti and Al;Cu;precipitated from metallic glass particles at consolidation temperature of 300?C. Consolidation temperature did not affect the matrix grains size of the composite. Quantitative analysis revealed that the distribution of reinforcing particles was considerably dependent on consolidation temperature. Density of the composite was increased by increasing the consolidation temperature to 250?C. The composite consolidated at250?C through ECAP process, exhibited the best combination of yield strength and ductility of 184 MPa and 48%, respectively.