In this paper we show that the Fibered Isomorphism Conjecture of Farrell and Jones, corresponding to the stable topological pseudoisotopy functor, is true for the fundamental groups of a class of complex manifolds. A ...In this paper we show that the Fibered Isomorphism Conjecture of Farrell and Jones, corresponding to the stable topological pseudoisotopy functor, is true for the fundamental groups of a class of complex manifolds. A consequence of this result is that the Whitehead group, reduced projective class groups and the negative K-groups of the fundamental groups of these manifolds vanish whenever the fundamental group is torsion free. We also prove the same results for a class of real manifolds including a large class of 3-manifolds which has a finite sheeted cover fibering over the circle.展开更多
文摘In this paper we show that the Fibered Isomorphism Conjecture of Farrell and Jones, corresponding to the stable topological pseudoisotopy functor, is true for the fundamental groups of a class of complex manifolds. A consequence of this result is that the Whitehead group, reduced projective class groups and the negative K-groups of the fundamental groups of these manifolds vanish whenever the fundamental group is torsion free. We also prove the same results for a class of real manifolds including a large class of 3-manifolds which has a finite sheeted cover fibering over the circle.