Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical ...Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.展开更多
基金Project supported by National Council for Scientific and Technological Development(CNPq)(#305067/2019-2,#303707/2022-4,#306452/2018-9)the Development of Education and Science and Technology of the State of Mato Grosso do Sul(FUNDECT)(#59/300.634/2016,#71/027.247/2022)。
文摘Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.