The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. Th...The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.展开更多
文摘The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.