Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method. pH of electrolyte ...Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method. pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition, specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1 (Pyrrole/Methylpyrrole) could play an important role.展开更多
文摘Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method. pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition, specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1 (Pyrrole/Methylpyrrole) could play an important role.