This work reports a one-pot procedure of laser ablation on a graphite target in a liquid medium, based on the variation of different parameters such as target type, laser wavelength, and ablation medium,to obtain high...This work reports a one-pot procedure of laser ablation on a graphite target in a liquid medium, based on the variation of different parameters such as target type, laser wavelength, and ablation medium,to obtain high-quality graphene nanosheets. The morphology of derived products was characterized by the field emission scanning electron microscopy(FE-SEM). Then, the morphology and structure of the optimized sample were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet-visible-near infrared(UV–vis-NIR) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). By controlling the laser ablation parameters, we were able to prepare micrometer-sized few-layer graphene nanosheets with mainly less than ten layers. Such synthesized graphene nanosheets were grown at the surface of a flexible graphite target, indicating many potential applications in fundamental research, electrochemical and as hydrophobic surfaces.展开更多
基金supported financially by the Iran Nanotechnology Initiative Council (INIC) for experimental setup
文摘This work reports a one-pot procedure of laser ablation on a graphite target in a liquid medium, based on the variation of different parameters such as target type, laser wavelength, and ablation medium,to obtain high-quality graphene nanosheets. The morphology of derived products was characterized by the field emission scanning electron microscopy(FE-SEM). Then, the morphology and structure of the optimized sample were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet-visible-near infrared(UV–vis-NIR) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). By controlling the laser ablation parameters, we were able to prepare micrometer-sized few-layer graphene nanosheets with mainly less than ten layers. Such synthesized graphene nanosheets were grown at the surface of a flexible graphite target, indicating many potential applications in fundamental research, electrochemical and as hydrophobic surfaces.