期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory 被引量:3
1
作者 s.n.chen F.Negoita +3 位作者 K.Spohr E.d’Humieres I.Pomerantz J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS 2019年第5期7-16,共10页
With the much-anticipated multi-petawatt(PW)laser facilities that are coming online,neutron sources with extreme fluxes could soon be in reach.Such sources would rely on spallation by protons accelerated by the high-i... With the much-anticipated multi-petawatt(PW)laser facilities that are coming online,neutron sources with extreme fluxes could soon be in reach.Such sources would rely on spallation by protons accelerated by the high-intensity lasers.These high neutron fluxes would make possible not only direct measurements of neutron capture andβ-decay rates related to the r-process of nucleosynthesis of heavy elements,but also such nuclear measurements in a hot plasma environment,which would be beneficial for s-process investigations in astrophysically relevant conditions.This could,in turn,finally allow possible reconciliation of the observed element abundances in stars and those derived from simulations,which at present show large discrepancies.Here,we review a possible pathway to reach unprecedented neutron fluxes using multi-PW lasers,as well as strategies to perform measurements to investigate the r-and s-processes of nucleosynthesis of heavy elements in cold matter,as well as in a hot plasma environment. 展开更多
关键词 finally EXTREME DECAY
下载PDF
Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas
2
作者 K.Mima J.Fuchs +5 位作者 T.Taguchi J.Alvarez J.R.Marques s.n.chen T.Tajima J.M.Perlado 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第3期127-134,共8页
The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found th... The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found that,depending on its current density,collective effects can significantly alter the propagated ion beam and the stopping power.The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory.The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. 展开更多
关键词 Two stream instabilities Ultra intense short pulse laser Proton beam Wake field Electron plasma wave Laser plasma interaction
下载PDF
Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization
3
作者 W.Yao A.Fazzini +19 位作者 s.n.chen K.Burdonov P.Antici J.B´eard S.Bolaños A.Ciardi R.Diab E.D.Filippov S.Kisyov V.Lelasseux M.Miceli Q.Moreno V.Nastasa S.Orlando S.Pikuz D.C.Popescu G.Revet X.Ribeyre E.d’Humi`eres J.Fuchs 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第1期15-28,共14页
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that t... Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure(as in our case)is able to induce energy dissipation and allow shock formation.Shock formation can alternatively take place when two plasmas interact,through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation.Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers(JLF/Titan at LLNL and LULI2000)with high-strength magnetic fields,we have investigated the generation of a magnetized collisionless shock and the associated particle energization.We have characterized the shock as being collisionless and supercritical.We report here on measurements of the plasma density and temperature,the electromagnetic field structures,and the particle energization in the experiments,under various conditions of ambient plasma and magnetic field.We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations.As a companion paper to Yao et al.[Nat.Phys.17,1177–1182(2021)],here we show additional results of the experiments and simulations,providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration. 展开更多
关键词 field COLLISION shock
下载PDF
Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams
4
作者 B.Martinez s.n.chen +15 位作者 S.Bolaños N.Blanchot G.Boutoux W.Cayzac C.Courtois X.Davoine A.Duval V.Horny I.Lantuejoul L.Le Deroff P.E.Masson-Laborde G.Sary B.Vauzour R.Smets L.Gremillet J.Fuchs 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第2期8-17,共10页
Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through partic... Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration.We examine this through particle-in-cell and Monte Carlo simulations that model,respectively,the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets.Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered.Owing to its high intensity,the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100MeV,thereby unlocking efficient neutron generation via spallation reactions.As a result,despite a 30-fold lower pulse energy than the LMJ-PETAL laser,the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux.Notably,we predict that very compact neutron pulses,of∼10 ps duration and∼100μm spot size,can be released provided the lead convertor target is thin enough(∼100μm).These sources are characterized by extreme fluxes,of the order of 10^(23) n cm^(−2) s^(−1),and even ten times higher when using the 6 PW Apollon laser.Such values surpass those currently achievable at large-scale accelerator-based neutron sources(∼10^(16) n cm^(−2) s^(−1)),or reported from previous laser experiments using low-Z converters(∼10^(18) n cm^(−2) s^(−1)).By showing that such laser systems can produce neutron pulses significantly brighter than existing sources,our findings open a path toward attractive novel applications,such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis. 展开更多
关键词 thereby ATTRACTIVE EXTREME
下载PDF
Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level
5
作者 K.Burdonov A.Fazzini +45 位作者 V.Lelasseux J.Albrecht P.Antici Y.Ayoul A.Beluze D.Cavanna T.Ceccotti M.Chabanis A.Chaleil s.n.chen Z.Chen F.Consoli M.Cuciuc X.Davoine J.P.Delaneau E.d’Humieres J.-L.Dubois C.Evrard E.Filippov A.Freneaux P.Forestier-Colleoni L.Gremillet V.Horny L.Lancia L.Lecherbourg N.Lebas A.Leblanc W.Ma L.Martin F.Negoita J.-L.Paillard D.Papadopoulos F.Perez S.Pikuz G.Qi F.Quere L.Ranc P.-A.Soderstrom M.Sciscio S.Sun S.Vallieres P.Wang W.Yao F.Mathieu P.Audebert J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第6期12-25,共14页
We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a no... We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a nominal power of 1 PW.Under the conditions that were tested,this beam delivered on-target pulses of 10 J average energy and 24 fs duration.Several diagnostics were fielded to assess the performance of the facility.The on-target focal spot and its spatial stability,the temporal intensity profile prior to the main pulse,and the resulting density gradient formed at the irradiated side of solid targets have been thoroughly characterized,with the goal of helping users design future experiments.Emissions of energetic electrons,ions,and electromagnetic radiation were recorded,showing good laser-to-target coupling efficiency and an overall performance comparable to that of similar international facilities.This will be followed in 2022 by a further commissioning stage at the multipetawatt level. 展开更多
关键词 performance beam NOMINAL
下载PDF
Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers
6
作者 S.Bolaños J.Beard +8 位作者 G.Revet s.n.chen S.Pikuz E.Filippov M.Safronova M.Cerchez O.Willi M.Starodubtsev J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS 2019年第4期1-8,共8页
Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients.However,for a long time,this technique was not considered a viable means of ele... Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients.However,for a long time,this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence(∼50°half-angle)of the electrons.Recently,a reduction in this divergence to 10°–20°half-angle has been obtained,using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum.Here we show that we can further improve the electron beam collimation,down to∼1.5°half-angle,of a high-charge(6 nC)beam,and in a highly reproducible manner,while using standard stand-alone 100 TW-class laser pulses.This is obtained by embedding the laser-target interaction in an external,large-scale(cm),homogeneous,extremely stable,and high-strength(20 T)magnetic field that is independent of the laser.With upcoming multi-PW,high repetition-rate lasers,this technique opens the door to achieving even higher charges(>100 nC). 展开更多
关键词 CHARGE high ACCELERATION
下载PDF
X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars
7
作者 E.D.Filippov I.Yu.Skobelev +7 位作者 G.Revet s.n.chen B.Khiar A.Ciardi D.Khaghani D.P.Higginson S.A.Pikuz J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS 2019年第6期22-29,共8页
Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation.In particular,we have recently demonstrated the possib... Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation.In particular,we have recently demonstrated the possibility of simulating in the laboratory the process of the accretion of matter on young stars[G.Revet et al.,Sci.Adv.3,e1700982(2017)].The present paper focuses on x-ray spectroscopy methods that allow us to investigate the complex plasma hydrodynamics involved in such experiments.We demonstrate that we can infer the formation of a plasma shell,surrounding the accretion column at the location of impact with the stellar surface,and thus resolve the present discrepancies between mass accretion rates derived from x-ray and optical-radiation astronomical observations originating from the same object.In our experiments,the accretion column ismodeled by having a collimated narrow(1 mm diameter)plasma stream first propagate along the lines of a large-scale external magnetic field and then impact onto an obstacle,mimicking the high-density region of the stellar chromosphere.A combined approach using steady-state and quasi-stationarymodels was successfully applied tomeasure the parameters of the plasma all along its propagation,at the impact site,and in the structure surrounding the impact region.The formation of a hot plasma shell,surrounding the denser and colder core,formed by the incoming stream of matter is observed near the obstacle using x-ray spatially resolved spectroscopy. 展开更多
关键词 ACCRETION STARS STELLAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部