1 Results Addressable, controllable, and switchable supramolecular devices can provide keys to regulate the structure and function of nanomaterials. From this viewpoint, oligonucleotides are promising supramolecular m...1 Results Addressable, controllable, and switchable supramolecular devices can provide keys to regulate the structure and function of nanomaterials. From this viewpoint, oligonucleotides are promising supramolecular materials because their assembly is addressable and they can be programmed. The G-quadruplexes of the oligonucleotide possess at least two important aspects: functions in vivo and applications in vitro. In addition, it is demonstrated that the G-quadruplex is promising for nanomolecular mach...展开更多
文摘1 Results Addressable, controllable, and switchable supramolecular devices can provide keys to regulate the structure and function of nanomaterials. From this viewpoint, oligonucleotides are promising supramolecular materials because their assembly is addressable and they can be programmed. The G-quadruplexes of the oligonucleotide possess at least two important aspects: functions in vivo and applications in vitro. In addition, it is demonstrated that the G-quadruplex is promising for nanomolecular mach...