期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
cardiGAN:A generative adversarial network model for design and discovery of multi principal element alloys 被引量:3
1
作者 Z.Li W.T.Nash +3 位作者 s.p.o’brien Y.Qiu R.K.Gupta N.Birbilis 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第30期81-96,共16页
Multi-principal element alloys(MPEAs),inclusive of high entropy alloys(HEAs),continue to attract significant research attention owing to their potentially desirable properties.Although MPEAs remain under extensive res... Multi-principal element alloys(MPEAs),inclusive of high entropy alloys(HEAs),continue to attract significant research attention owing to their potentially desirable properties.Although MPEAs remain under extensive research,traditional(i.e.empirical)alloy production and testing are both costly and timeconsuming,partly due to the inefficiency of the early discovery process which involves experiments on a large number of alloy compositions.It is intuitive to apply machine learning in the discovery of this novel class of materials,of which only a small number of potential alloys have been probed to date.In this work,a proof-of-concept is proposed,combining generative adversarial networks(GANs)with discriminative neural networks(NNs),to accelerate the exploration of novel MPEAs.By applying the GAN model herein,it was possible to directly generate novel compositions for MPEAs,and to predict their phases.To verify the predictability of the model,alloys designed by the model are presented and a candidate produced-as validation.This suggests that the model herein offers an approach that can significantly enhance the capacity and efficiency of development of novel MPEAs. 展开更多
关键词 Alloy design Machine learning Generative adversarial network Neural network Multi-principal element alloy High entropy alloys
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部