Stainless steels have received wide attention as a substitute material for bipolar plates in high temperature proton exchange membrane fuel cell(HT-PEMFC).In the present work,the CrN,CrAlN and multilayer CrN/CrAlN coa...Stainless steels have received wide attention as a substitute material for bipolar plates in high temperature proton exchange membrane fuel cell(HT-PEMFC).In the present work,the CrN,CrAlN and multilayer CrN/CrAlN coatings were deposited on 316 L SS to increase the corrosion resistance and decrease the interfacial contact resistance.The deposited coatings exhibited face centered cubic phase structure and it was verified from the X-ray diffraction pattern.X-ray photo electron spectroscopy results showed the formation of both CrN and CrAlN layers on 316 L SS.CrN/CrAlN coating is more helpful in water management due to low surface roughness and high contact angle in the HT-PEMFC environment.The corrosion resistance behavior of all the samples were studied in 85%H_(3)PO_(4)solution at 140℃purged with H_(2)(HT-PEMFC anode)and O_(2)(HT-PEMFC cathode)gases.The results showed that all the coatings considerably improved the performance of 316 L SS and superior corrosion resistance was observed for CrN/CrAlN multilayer coating,whose protective efficiency was 98.12%and 96.14%in the two simulated HT-PEMFC environments.The results of electrochemical impedance spectroscopic studies demonstrated higher impedance for CrN/CrAlN coating.Surface morphological studies performed after corrosion studies revealed that protection ability of CrN/CrAlN coating still remained acceptable.A very low interfacial contact resistance value of 6 mΩ cm^(2) at 140 N/cm;was observed for CrN/CrAlN coating.Moreover,after corrosion studies,the interfacial contact resistance value of CrN/CrAlN coated 316 L was much lower than that of CrN and CrAlN coatings due to the increased oxidation resistance.The maximum power density of about 0.93 W/cm^(2) at 2 A/cm^(2) and output voltage of 0.96 V was observed for CrN/CrAlN coating.展开更多
基金the financial assistance received from Science and Engineering Research Board(SERB PDF/2017/002594),New Delhi,India。
文摘Stainless steels have received wide attention as a substitute material for bipolar plates in high temperature proton exchange membrane fuel cell(HT-PEMFC).In the present work,the CrN,CrAlN and multilayer CrN/CrAlN coatings were deposited on 316 L SS to increase the corrosion resistance and decrease the interfacial contact resistance.The deposited coatings exhibited face centered cubic phase structure and it was verified from the X-ray diffraction pattern.X-ray photo electron spectroscopy results showed the formation of both CrN and CrAlN layers on 316 L SS.CrN/CrAlN coating is more helpful in water management due to low surface roughness and high contact angle in the HT-PEMFC environment.The corrosion resistance behavior of all the samples were studied in 85%H_(3)PO_(4)solution at 140℃purged with H_(2)(HT-PEMFC anode)and O_(2)(HT-PEMFC cathode)gases.The results showed that all the coatings considerably improved the performance of 316 L SS and superior corrosion resistance was observed for CrN/CrAlN multilayer coating,whose protective efficiency was 98.12%and 96.14%in the two simulated HT-PEMFC environments.The results of electrochemical impedance spectroscopic studies demonstrated higher impedance for CrN/CrAlN coating.Surface morphological studies performed after corrosion studies revealed that protection ability of CrN/CrAlN coating still remained acceptable.A very low interfacial contact resistance value of 6 mΩ cm^(2) at 140 N/cm;was observed for CrN/CrAlN coating.Moreover,after corrosion studies,the interfacial contact resistance value of CrN/CrAlN coated 316 L was much lower than that of CrN and CrAlN coatings due to the increased oxidation resistance.The maximum power density of about 0.93 W/cm^(2) at 2 A/cm^(2) and output voltage of 0.96 V was observed for CrN/CrAlN coating.