Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance c...Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance characteristics in turning of Al-SiC-Gr hybrid composites using grey-fuzzy algorithm. The hybrid composites with 5%, 7.5% and 10% combined equal mass fraction of SiC-Gr particles were used for the study and their corresponding tensile strength values are 170, 210, 204 MPa respectively. Al-10%(SiC-Gr) hybrid composite provides better machinability when compared with composites with 5% and 7.5% of SiC-Gr. Grey-fuzzy logic approach offers improved grey-fuzzy reasoning grade and has less uncertainties in the output when compared with grey relational technique. The confirmatory test reveals an increase in grey-fuzzy reasoning grade from 0.619 to 0.891, which substantiates the improvement in multi-performance characteristics at the optimal level of process parameters setting.展开更多
文摘Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance characteristics in turning of Al-SiC-Gr hybrid composites using grey-fuzzy algorithm. The hybrid composites with 5%, 7.5% and 10% combined equal mass fraction of SiC-Gr particles were used for the study and their corresponding tensile strength values are 170, 210, 204 MPa respectively. Al-10%(SiC-Gr) hybrid composite provides better machinability when compared with composites with 5% and 7.5% of SiC-Gr. Grey-fuzzy logic approach offers improved grey-fuzzy reasoning grade and has less uncertainties in the output when compared with grey relational technique. The confirmatory test reveals an increase in grey-fuzzy reasoning grade from 0.619 to 0.891, which substantiates the improvement in multi-performance characteristics at the optimal level of process parameters setting.