期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intelligent Aquila Optimization Algorithm-Based Node Localization Scheme for Wireless Sensor Networks
1
作者 Nidhi Agarwal M.Gokilavani +4 位作者 S.Nagarajan s.saranya Hadeel Alsolai Sami Dhahbi Amira Sayed Abdelaziz 《Computers, Materials & Continua》 SCIE EI 2023年第1期141-152,共12页
In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization... In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network. 展开更多
关键词 Aquila optimizer node localization WSN intelligent models unknown nodes anchor nodes
下载PDF
A Machine Learning-Based Technique with Intelligent WordNet Lemmatize for Twitter Sentiment Analysis
2
作者 s.saranya G.Usha 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期339-352,共14页
Laterally with the birth of the Internet,the fast growth of mobile stra-tegies has democratised content production owing to the widespread usage of social media,resulting in a detonation of short informal writings.Twi... Laterally with the birth of the Internet,the fast growth of mobile stra-tegies has democratised content production owing to the widespread usage of social media,resulting in a detonation of short informal writings.Twitter is micro-blogging short text and social networking services,with posted millions of quick messages.Twitter analysis addresses the topic of interpreting users’tweets in terms of ideas,interests,and views in a range of settings andfields.This type of study can be useful for a variation of academics and applications that need knowing people’s perspectives on a given topic or event.Although sentiment examination of these texts is useful for a variety of reasons,it is typically seen as a difficult undertaking due to the fact that these messages are frequently short,informal,loud,and rich in linguistic ambiguities such as polysemy.Furthermore,most contemporary sentiment analysis algorithms are based on clean data.In this paper,we offers a machine-learning-based sentiment analysis method that extracts features from Term Frequency and Inverse Document Frequency(TF-IDF)and needs to apply deep intelligent wordnet lemmatize to improve the excellence of tweets by removing noise.We also utilise the Random Forest network to detect the emotion of a tweet.To authenticate the proposed approach performance,we conduct extensive tests on publically accessible datasets,and thefindings reveal that the suggested technique significantly outperforms sentiment classification in multi-class emotion text data. 展开更多
关键词 Random Forest sentiment analysis social media term frequency and inverse document frequency TWITTER wordnet lemmatize
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部