期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods 被引量:1
1
作者 K.K.Ajith s.tulasi ram +4 位作者 GuoZhu Li M.Yamamoto K.Hozumi C.Y.Yatini P.Supnithi 《Earth and Planetary Physics》 CSCD 2021年第5期378-386,共9页
The occurrence of midnight Equatorial Plasma Bubbles(EPBs)during the June solstice period of the ascending phase of solar cycle 24,from 2010 to 2014,was studied using data from the 47 MHz Equatorial Atmosphere Radar(E... The occurrence of midnight Equatorial Plasma Bubbles(EPBs)during the June solstice period of the ascending phase of solar cycle 24,from 2010 to 2014,was studied using data from the 47 MHz Equatorial Atmosphere Radar(EAR)at Kototabang,Indonesia.The analysis shows that the occurrence of midnight hour EPBs was at its maximum during the low solar activity year 2010 and monotonically decreased thereafter with increasing solar activity.Details of the dependence of midnight hour EPB occurrence on solar activity were investigated using SAMI2 model simulation with a realistic input of E×B drift velocity data obtained from the CINDI-IVM onboard the C/NOFS satellite.Results obtained from term-by-term analysis of the flux tube integrated linear growth rate of RT instability indicate that the formation of a high flux tube electron content height gradient(steep vertical gradient)region at higher altitudes,due to the elevated F layer,is the key factor enhancing the growth rate of RT instability during low solar activity June solstices.Other factors are discussed in light of the relatively weak westward zonal electric field in the presence of the equatorward neutral wind and north-to-south transequatorial wind around the midnight hours of low solar activity June solstices.Also discussed are the initial seeding of RT instability by MSTIDs and how the threshold height required for EPB development varies with solar activity. 展开更多
关键词 equatorial plasma bubbles equatorial ionosphere ionospheric instabilities and irregularities
下载PDF
Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation
2
作者 Yuichi Otsuka Luca Spogli +1 位作者 s.tulasi ram GuoZhu Li 《Earth and Planetary Physics》 CSCD 2021年第5期365-367,共3页
The 2 nd Equatorial Plasma Bubble(EPB)workshop,funded by the Institute of Geology and Geophysics,Chinese Academy of Sciences,and the National Natural Science Foundation of China,took place in Beijing,China during Sept... The 2 nd Equatorial Plasma Bubble(EPB)workshop,funded by the Institute of Geology and Geophysics,Chinese Academy of Sciences,and the National Natural Science Foundation of China,took place in Beijing,China during September 13–15,2019.The EPB workshop belongs to a conference series that began in 2016 in Nagoya,Japan at the Institute for Space-Earth Environmental Research,Nagoya University,resulting in a special issue of Progress in Earth and Planetary Science that focused on EPBs.The main goal of the series is to organize in-depth discussion by scientists working on ionospheric irregularities,and solve the scientific challenges in EPB and ionospheric scintillation forecasting.The 2 nd EPB workshop gathered almost 60 scientists from seven countries.A total of 20 invited and contributing papers focusing on ionospheric irregularities and scintillations were presented.Here we briefly comment on 10 papers included in this special issue. 展开更多
关键词 equatorial plasma bubble ionospheric irregularity and scintillation plasma instability 2nd EPB workshop
下载PDF
Planetary-Scale Wave Structures of the Earth's Atmosphere Revealed from the COSMIC Observations 被引量:2
3
作者 S.K.A.V.Prasad Rao ANISETTY P.S.BRAHMANANDAM +6 位作者 G.UMA A.Narendra BABU 黄清勇 G.Anil KUMAR s.tulasi ram 王筱岚 朱延祥 《Journal of Meteorological Research》 SCIE 2014年第2期281-295,共15页
GPS radio occultation(GPS RO) method,an active satellite-to-satellite remote sensing technique,is capable of producing accurate,all-weather,round the clock,global refractive index,density,pressure,and temperature pr... GPS radio occultation(GPS RO) method,an active satellite-to-satellite remote sensing technique,is capable of producing accurate,all-weather,round the clock,global refractive index,density,pressure,and temperature profiles of the troposphere and stratosphere.This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC(Constellation Observing System for Meteorology,Ionosphere,and Climate) satellites during 2006-2009 and their interactions with background atmospheric conditions.It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days(slow Kelvin waves) with higher zonal wave numbers(either 1 or 2),but also possessing downward phase progression,giving evidence that the source regions of them are located at lower altitudes.A thorough verification of outgoing longwave radiation(OLR) reveals that deep convection activity has developed regularly over the Indonesian region,suggesting that the Kelvin waves are driven by the convective activity.The derived Kelvin waves show enhanced(diminished) tendencies during westward(eastward) phase of the quasi-biennial oscillation(QBO) in zonal winds,implying a mutual relation between both of them.The El Nino and Southern Oscillation(ENSO) below 18 km and the QBO features between 18 and 27km in temperature profiles are observed during May 2006-May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform(HHT).Further,temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO,which has revealed interesting results and are discussed in light of available literature. 展开更多
关键词 radio occultation technique Kelvin waves outgoing long-wave radiation(OLR) quasi-biennial oscillation(QBO) El Nino and Southern Oscillation(ENSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部