This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes...This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes from several nanometers to micrometers. A variety of very simple one-pot methods, at times employing com- mercial microwave ovens, inexpensive low power ultrasound cleaners, or two-electrode electro-chemistry, can be surprisingly effective in the controlled synthesis of a wide range of nanostructured products, if only parameters are carefully chosen. Many approaches which are adopted include synthesis of Ag nanostructures with various shapes in solution, doping of Ag nanoparticles on unmodified silica and on/inside carbon spheres, kinetically controlled growth of Ag micro-particles with novel nanostructures on flat substrates, and galvanic replace- ment towards bimetallic Ag-Au dendrites and carbon composites. Characterizations of shape, composition and microstructure are carried out via scanning and transmission electron microscopy, various spectroscopy methods, N2 absorption measurements and suchlike. The involved growth mechanisms are investigated in order to discover new means towards better control. Size, location and shape control, including micro- and nanostructure features, allows tuning the products properties towards desired applications. We focus on the optical properties and catalytic activities, but also the stability of compounds can be an issue of interest.展开更多
基金supported by the National Basic Research Program of China (No.2010CB631004)the National Natural Science Foundation of China (No.50831004)Doctoral Fund of Ministry of Education of China (No.20090091120034)
文摘This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes from several nanometers to micrometers. A variety of very simple one-pot methods, at times employing com- mercial microwave ovens, inexpensive low power ultrasound cleaners, or two-electrode electro-chemistry, can be surprisingly effective in the controlled synthesis of a wide range of nanostructured products, if only parameters are carefully chosen. Many approaches which are adopted include synthesis of Ag nanostructures with various shapes in solution, doping of Ag nanoparticles on unmodified silica and on/inside carbon spheres, kinetically controlled growth of Ag micro-particles with novel nanostructures on flat substrates, and galvanic replace- ment towards bimetallic Ag-Au dendrites and carbon composites. Characterizations of shape, composition and microstructure are carried out via scanning and transmission electron microscopy, various spectroscopy methods, N2 absorption measurements and suchlike. The involved growth mechanisms are investigated in order to discover new means towards better control. Size, location and shape control, including micro- and nanostructure features, allows tuning the products properties towards desired applications. We focus on the optical properties and catalytic activities, but also the stability of compounds can be an issue of interest.