期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
泥石流次声特征分析及流量智能反演方法
1
作者 胡耕源 刘敦龙 +2 位作者 桑学佳 张少杰 陈乔 《自然灾害学报》 CSCD 北大核心 2024年第2期54-64,共11页
次声技术已被广泛应用于泥石流监测预警中,泥石流次声的某些特征可从一定程度上反映泥石流的流量。泥石流流量是评估泥石流规模的重要参数,准确预测泥石流流量对泥石流监测预警具有重要意义。围绕影响泥石流次声特性的关键物理参量,通... 次声技术已被广泛应用于泥石流监测预警中,泥石流次声的某些特征可从一定程度上反映泥石流的流量。泥石流流量是评估泥石流规模的重要参数,准确预测泥石流流量对泥石流监测预警具有重要意义。围绕影响泥石流次声特性的关键物理参量,通过定量化配比水槽实验模拟泥石流产生次声的物理过程,采集次声信号并测算流量。通过分析泥石流流量与次声之间的关联,揭示泥石流流量对次声特性的影响规律。经特征提取和特征选择提炼出可表征泥石流流量的次声特征因子并构建特征向量集。通过对比分析k近邻算法(k-nearest neighbor,KNN)、神经网络、随机森林和梯度提升决策树(gradient boosting decision tree,GBDT)算法在流量预测方面的表现性能,构建了具有较高预测准确率的泥石流流量智能反演模型。通过该智能反演模型可实现泥石流流量的有效预测,从而为泥石流次声监测提供更丰富的报警信息。 展开更多
关键词 泥石流 次声 特征分析 流量 智能反演
下载PDF
无人机遥感技术在甘肃北山地区地质填图中的应用 被引量:15
2
作者 戴均豪 薛林福 +2 位作者 李忠潭 桑学佳 马建雄 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2021年第6期1908-1920,共13页
甘肃北山地区岩浆岩及变质岩出露广泛,植被稀少,地势平缓,是无人机遥感开展地质填图试验的理想目标区。为解决传统地质填图方法受地形、环境限制和投入高及工作周期长等问题,选取北山长流水地区20 km;化探重点工作区为目标区,利用大疆精... 甘肃北山地区岩浆岩及变质岩出露广泛,植被稀少,地势平缓,是无人机遥感开展地质填图试验的理想目标区。为解决传统地质填图方法受地形、环境限制和投入高及工作周期长等问题,选取北山长流水地区20 km;化探重点工作区为目标区,利用大疆精灵4专业版无人机采集图像,并采用Photoscan软件合成高分辨率正射影像以及三维模型,建立解译标志,对目标区域进行地质解译,获得比前人1∶1万地质图更加精细的地质图。该方法较传统填图方法能够解译出地质体形态、岩脉产状、微小断裂等更详细的地质内容,并能提供划分岩脉期次的证据。 展开更多
关键词 无人机 甘肃北山 地质填图 遥感
下载PDF
智能矿产地质调查方法 ——以甘肃大桥-崖湾地区为例 被引量:5
3
作者 杨明莉 薛林福 +3 位作者 冉祥金 桑学佳 燕群 戴均豪 《岩石学报》 SCIE EI CAS CSCD 北大核心 2021年第12期3880-3892,共13页
在矿产地质调查理论与实践的基础上,提出一种智能矿产地质调查方法,指出智能矿产地质调查生态系统是与智能矿产地质调查相关的智能数据采集设备、应用、用户、标准、规范、智能地质调查云平台等组成部分及相互关系构成的完整系统。智能... 在矿产地质调查理论与实践的基础上,提出一种智能矿产地质调查方法,指出智能矿产地质调查生态系统是与智能矿产地质调查相关的智能数据采集设备、应用、用户、标准、规范、智能地质调查云平台等组成部分及相互关系构成的完整系统。智能矿产地质调查的主要步骤包括:智能数据分析、重点工作区圈定、矿产地质数据采集、重点区野外工作、智能找矿预测等。提出了数据驱动与知识驱动相结合的找矿预测方法,集成了采用深度学习技术进行特征匹配找矿预测的方法和基于知识图谱的找矿预测方法。设计和基本实现了智能矿产地质调查云平台的架构与功能。应用特征匹配找矿预测方法在甘肃大桥-崖湾地区圈定了5个找矿预测区。 展开更多
关键词 矿产地质调查 智能找矿预测 深度学习 知识图谱 云平台 生态系统
下载PDF
融合多源异构数据的滑坡变形阶段智能判识方法
4
作者 蒲未来 刘敦龙 +2 位作者 桑学佳 张少杰 陈乔 《灾害学》 CSCD 北大核心 2023年第4期179-186,共8页
针对滑坡体不同变形阶段的监测数据样本不均衡,样本扩充量的限定研究较少以及判识模型准确率较低等现实问题,该文提出了一种少数类样本全局扩充量测算方法以及将分类结果混淆矩阵与GSA相结合的基于遗传的多分类样本合成方法MCGSA,可避... 针对滑坡体不同变形阶段的监测数据样本不均衡,样本扩充量的限定研究较少以及判识模型准确率较低等现实问题,该文提出了一种少数类样本全局扩充量测算方法以及将分类结果混淆矩阵与GSA相结合的基于遗传的多分类样本合成方法MCGSA,可避免产生大量的合成样本,且有效解决了样本不均衡问题;其次借助堆栈泛化思想以及具有较强知识挖掘能力的机器学习模型,结合滑坡体的多源异构监测数据,构建了基于stacking的滑坡变形阶段智能判识模型;最后将该模型应用在多个滑坡隐患点上进行现场实验测试,并进行了对比实验分析,分析结果显示该判识模型的准确率可达89%,F1宏平均值达到了74%。模型的判识结果可为区域内滑坡隐患点的预警信息发布提供辅助决策。 展开更多
关键词 滑坡变形阶段 多源异构 全局扩充量测算 MCGSA样本合成 混淆矩阵
下载PDF
基于虚拟仿真的无人机野外地质调查智能路径训练研究
5
作者 冯端国 桑学佳 +2 位作者 刘敦龙 冉祥金 薛林福 《地质论评》 CAS CSCD 北大核心 2023年第S01期588-590,共3页
我国东部矿产资源开发利用逼近临界、资源消耗持续增加,众多矿产资源勘探和开采工作逐步向西部艰苦地区转移,但现有地质野外工作自动化程度低,大量繁重、高危的工作仍然由人力完成(成秋明,2021),严重制约了向“盲区”找矿、要矿的战略进... 我国东部矿产资源开发利用逼近临界、资源消耗持续增加,众多矿产资源勘探和开采工作逐步向西部艰苦地区转移,但现有地质野外工作自动化程度低,大量繁重、高危的工作仍然由人力完成(成秋明,2021),严重制约了向“盲区”找矿、要矿的战略进程(侯增谦,2021)。 展开更多
关键词 虚拟仿真 无人机 地质调查
下载PDF
Landslide susceptibility prediction method based on HSOM and IABPA-CNN in Wenchuan earthquake disaster area
6
作者 LIU Dunlong XIANG Qian +2 位作者 sang xuejia ZHANG Shaojie YANG Hongjuan 《Journal of Mountain Science》 SCIE 2024年第12期4001-4018,共18页
Landslide susceptibility prediction assesses the likelihood of landslides occurring in specific areas,providing crucial scientific support for mitigating the threat to people’s lives and property posed by landslide d... Landslide susceptibility prediction assesses the likelihood of landslides occurring in specific areas,providing crucial scientific support for mitigating the threat to people’s lives and property posed by landslide disasters.To address the challenges in the existing landslide susceptibility prediction methods,such as insufficient representativeness of selected nonlandslide points,limited ability to capture nonlinear relationships,and a tendency to fall into local optima,the traditional Self-Organizing Maps(SOM)is improved in this paper by using a hierarchical approach to form Hierarchical Self-Organizing Maps(HSOM),and a model integrating the Information Value(IV),Adaptive Bat Precise Algorithm(ABPA),and Convolutional Neural Network(CNN)is proposed,termed IABPA-CNN.Evaluation factors such as topography,basic geology and hydrometeorology were selected with the 2008 Wenchuan earthquake-hit disaster area as the study area.The data were preprocessed,Pearson correlation coefficient,tolerance(TOL),and variance inflation factor(VIF)were employed to assess the correlation among all the factors.Subsequently,the information value for each evaluation factor's classification was calculated,thereby establishing a high-quality sample dataset,which was input into the IABPA-CNN model and IVCNN model(contrast model),respectively.The Receiver Operating Characteristic(ROC)curve was used to compare and analyze the accuracy and performance.The Area Under Curve(AUC)values for the two models is 0.89 and 0.85,respectively,indicating that the IABPA-CNN model has higher predictive accuracy.Compared with the IV-CNN model,the proportion of landslides predicted by the IABPA-CNN model in the high susceptibility and very high susceptibility area increased to 28.18%and 30.76%,respectively.Although the area proportions of very low susceptibility and low susceptibility area increased,the proportion of landslides quantity decreased.Furthermore,Monte Carlo method was employed to analyze the uncertainty of IABPA-CNN model,and average variance of 0.0083,which indicates that the model has high reliability in landslide susceptibility prediction.Therefore,the research results in this study provide a reliable scientific basis for the work of landslide disaster prevention and mitigation in Wenchuan earthquake disaster area. 展开更多
关键词 Landslide Susceptibility Information value Convolutional neural network Bat algorithm Monte Carlo
下载PDF
Simulation of unmanned survey path planning in debris flow gully based on GRE-Bat algorithm
7
作者 LIU Dunlong FENG Duanguo +2 位作者 sang xuejia ZHANG Shaojie YANG Hongjuan 《Journal of Mountain Science》 SCIE 2024年第12期4062-4082,共21页
Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and mos... Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application. 展开更多
关键词 Bat algorithm Unmanned surveys Debris flow gully Path planning Unmanned aerial vehicle Reverse learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部