It is well established that the decline in female reproductive outcomes is related to postovulatory aging of oocytes and advanced maternal age.Poor oocyte quality is correlated with compromised genetic integrity and e...It is well established that the decline in female reproductive outcomes is related to postovulatory aging of oocytes and advanced maternal age.Poor oocyte quality is correlated with compromised genetic integrity and epigenetic changes during the oocyte aging process.Here,we review the epigenetic alterations,mainly focused on DNA methylation,histone acetylation and methylation associated with postovulatory oocyte aging as well as advanced maternal age.Furthermore,we address the underlying epigenetic mechanisms that contribute to the decline in oocyte quality during oocyte aging.展开更多
Increasing evidences indicate that chronic diseases in offspring may be the result of ancestral environmental exposures. Exposures to environmental compounds in windows of epigenetic susceptibility have been shown to ...Increasing evidences indicate that chronic diseases in offspring may be the result of ancestral environmental exposures. Exposures to environmental compounds in windows of epigenetic susceptibility have been shown to promote epigenetic alterations that can be inherited between generations. DNA methylation, histone modifications, and noncoding RNAs are sound mechanistic candidates for the delivery of environmental information from gametes to zygotes. This review focuses mainly on paternal exposures and assesses the risk of epigenetic alterations in the development of diseases, providing insights into relationships between aberrant sperm epigenetic patterns and offspring health. Elucidation of the mechanisms underlying environmental epigenetic information that survive from epigenetic reprogramming and its transmission to future generations may hold a great promise for providing therapeutic targets for epigenetic diseases associated with environmental exposures.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant No. 81100422)National Basic Research Program of China (Grant Nos. 2012CB944404 and 2011CB944501)
文摘It is well established that the decline in female reproductive outcomes is related to postovulatory aging of oocytes and advanced maternal age.Poor oocyte quality is correlated with compromised genetic integrity and epigenetic changes during the oocyte aging process.Here,we review the epigenetic alterations,mainly focused on DNA methylation,histone acetylation and methylation associated with postovulatory oocyte aging as well as advanced maternal age.Furthermore,we address the underlying epigenetic mechanisms that contribute to the decline in oocyte quality during oocyte aging.
文摘Increasing evidences indicate that chronic diseases in offspring may be the result of ancestral environmental exposures. Exposures to environmental compounds in windows of epigenetic susceptibility have been shown to promote epigenetic alterations that can be inherited between generations. DNA methylation, histone modifications, and noncoding RNAs are sound mechanistic candidates for the delivery of environmental information from gametes to zygotes. This review focuses mainly on paternal exposures and assesses the risk of epigenetic alterations in the development of diseases, providing insights into relationships between aberrant sperm epigenetic patterns and offspring health. Elucidation of the mechanisms underlying environmental epigenetic information that survive from epigenetic reprogramming and its transmission to future generations may hold a great promise for providing therapeutic targets for epigenetic diseases associated with environmental exposures.