期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Environmental Sound Classification Using Deep Learning 被引量:7
1
作者 sHANTHAKUMAR s shakila s +1 位作者 sUNETH Pathirana JAYALATH Ekanayake 《Instrumentation》 2020年第3期15-22,共8页
Perhaps hearing impairment individuals cannot identify the environmental sounds due to noise around them.However,very little research has been conducted in this domain.Hence,the aim of this study is to categorize soun... Perhaps hearing impairment individuals cannot identify the environmental sounds due to noise around them.However,very little research has been conducted in this domain.Hence,the aim of this study is to categorize sounds generated in the environment so that the impairment individuals can distinguish the sound categories.To that end first we define nine sound classes--air conditioner,car horn,children playing,dog bark,drilling,engine idling,jackhammer,siren,and street music--typically exist in the environment.Then we record 100 sound samples from each category and extract features of each sound category using Mel-Frequency Cepstral Coefficients(MFCC).The training dataset is developed using this set of features together with the class variable;sound category.Sound classification is a complex task and hence,we use two Deep Learning techniques;Multi Layer Perceptron(MLP)and Convolution Neural Network(CNN)to train classification models.The models are tested using a separate test set and the performances of the models are evaluated using precision,recall and F1-score.The results show that the CNN model outperforms the MLP.However,the MLP also provided a decent accuracy in classifying unknown environmental sounds. 展开更多
关键词 Mel-Frequency Cepstral Coefficients MFCC Multi-Layer Perceptron MLP Convolutional Neural Network CNN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部