Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but...Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but is limited by its non-specificity.Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting.The Plekho1 gene encodes casein kinase-2 interacting protein-1(CKIP-1),which can negatively regulate osteogenic differentiation.Based on the above,we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis,silanization and adsorption.The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro.The results demonstrate that CaPNPs with 7%Mg(60 nm particle size,short rod shape and good dispersion)were suitable for use as gene carriers.The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts,and the dual-ligand system possessed a synergistic effect.The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement.展开更多
基金Project(81571021)supported by the National Natural Science Foundation of ChinaProject(2018zzts944)supported by the Graduate Student Independent Exploration Innovation Fund of the Central South University,China+1 种基金Projects(2015WK3012,2018SK2017)supported by the Hunan Provincial Science and Technology Department,ChinaProject(20160301)supported by New Talent Project of the Third Xiangya Hospital of Central South University,China。
文摘Calcium phosphate nanoparticles(CaPNPs)have good biocompatibility as gene carriers;however,CaPNPs typically exhibit a low transfection efficiency.Cell penetrate peptide(TAT)can increase the uptake of nanoparticles but is limited by its non-specificity.Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting.The Plekho1 gene encodes casein kinase-2 interacting protein-1(CKIP-1),which can negatively regulate osteogenic differentiation.Based on the above,we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis,silanization and adsorption.The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro.The results demonstrate that CaPNPs with 7%Mg(60 nm particle size,short rod shape and good dispersion)were suitable for use as gene carriers.The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts,and the dual-ligand system possessed a synergistic effect.The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement.