The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- na...The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.展开更多
Flexible electronics have received considerable attention in academies and industries for their promising applications in enormous fields, such as flexible displays, wearable sensors, artificial skins, and flexible en...Flexible electronics have received considerable attention in academies and industries for their promising applications in enormous fields, such as flexible displays, wearable sensors, artificial skins, and flexible energy devices. Challenges remain in developing a flexible and scalable manufacturing method to facilitate the fabrication of multi-functional structures in a flexible electronic system. Nanoimprint lithography is a high resolution and low-cost approach to fabricate nanostructures over a large area. This paper reviews recent progress of nanoimprint lithography and its applications in flexible electronics. The basic principles, classification, research focus, and critical issues of nanoimprint lithography are elaborated. Then, the advantages of nanoimprint lithography are demonstrated in several typical applications related to flexible electronics, including conductive films, optoelectronic devices, flexible sensors, energy harvesting and storage devices, and bioinspired electronic devices. Finally,the challenges and perspectives of nanoimprint lithography in flexible electronic systems are discussed.展开更多
The changes of the wettability of the solid surfaces have attracted massive attention due to their important practical implications in numerous fields. As a new subject, the research on the wettability under the diffe...The changes of the wettability of the solid surfaces have attracted massive attention due to their important practical implications in numerous fields. As a new subject, the research on the wettability under the different environments is still in its early stage. So the fundamental research must be performed for the practical applications under different environments. However, it is seldom that the comprehensive wettability of a surface in air, in water and in oil has been reported. In this paper, the authors investigated the wettability of the stainless steel mesh coated with polyurethane in the above three different environments. The surface of the uncoated mesh was found to be hydrophobic in air, but the surface of the coated mesh was superhydrophilic in air. More interestingly, the surfaces of the coated meshes were superoleophilic in water and superhydrophobic in oil. Due to the coated meshes with these wettabilities were fabricated via a facile two-step method, the presented method may be adopted for large-scale industrial production, in various fields, such as icing prevention or the oil-field industry.展开更多
基金Major Research Plan of NSFC on Nanomanufacturing(No.90923040)National Basic Research Program of China(No.2009CB724202)
文摘The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.91323303,51421004,51522508)
文摘Flexible electronics have received considerable attention in academies and industries for their promising applications in enormous fields, such as flexible displays, wearable sensors, artificial skins, and flexible energy devices. Challenges remain in developing a flexible and scalable manufacturing method to facilitate the fabrication of multi-functional structures in a flexible electronic system. Nanoimprint lithography is a high resolution and low-cost approach to fabricate nanostructures over a large area. This paper reviews recent progress of nanoimprint lithography and its applications in flexible electronics. The basic principles, classification, research focus, and critical issues of nanoimprint lithography are elaborated. Then, the advantages of nanoimprint lithography are demonstrated in several typical applications related to flexible electronics, including conductive films, optoelectronic devices, flexible sensors, energy harvesting and storage devices, and bioinspired electronic devices. Finally,the challenges and perspectives of nanoimprint lithography in flexible electronic systems are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51475353,51375361&51475352)the Tribology Science Fund of the State Key Laboratory of Tribology(Grant No.SKLTKF14A02)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(Grant No.2016JM5004)the Key Laboratory of the Shaanxi Provincial Department of Education(Grant No.16JS057)
文摘The changes of the wettability of the solid surfaces have attracted massive attention due to their important practical implications in numerous fields. As a new subject, the research on the wettability under the different environments is still in its early stage. So the fundamental research must be performed for the practical applications under different environments. However, it is seldom that the comprehensive wettability of a surface in air, in water and in oil has been reported. In this paper, the authors investigated the wettability of the stainless steel mesh coated with polyurethane in the above three different environments. The surface of the uncoated mesh was found to be hydrophobic in air, but the surface of the coated mesh was superhydrophilic in air. More interestingly, the surfaces of the coated meshes were superoleophilic in water and superhydrophobic in oil. Due to the coated meshes with these wettabilities were fabricated via a facile two-step method, the presented method may be adopted for large-scale industrial production, in various fields, such as icing prevention or the oil-field industry.