A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature a...A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.展开更多
Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux ...Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.展开更多
Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weat...Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weather Forecast ERA-40 reanalysis data and monthly rainfall data from 79 stations in Northeast China. The results show that the interannual variation in rainfall over Northeast China is mainly dominated by a cold vortex in early summer (May-June) and by the East Asian summer monsoon in late summer (July-August). In early summer, corresponding to increased rainfall in Northeast China, an anomalous cyclonic anomaly tilted westward with height appears to the northwest and cold vortices occur frequently. In late summer, the rainfall anomaly is mainly controlled by a northward shift of the local East Asian jet stream in the upper troposphere and the northwest extension of the western Pacific subtropical high (WPSH) in the lower troposphere. The enhanced southwesterly anomaly in the west of the WPSH transports more moisture into Northeast China and results in more rainfall. In addition, compared with that in July, the rainfall in Northeast China in August is also influenced by a mid- and high-latitude blocking high over Northeast Asia.展开更多
基金supported by a National Natural Science Foundation project approved under Grant Nos.41175083,41275096 and 41305091a China Meteorological Administration special public welfare reserch funds registeredunder Grant Nos.GYHY201006020,GYHY 201106016,and GYHY201106015
文摘A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.
基金Under the auspices of National Key Technology R&D Program of China (No. 2007BAC29B01)Major State Basic Research Development Program of China (973 Program) (No. 2006CB400500)+1 种基金National Natural Science Foundation of China (No.40575047, 40705036, 40975055)Key Program of Jilin Provincial Science & Technology Department (No. 20020417)
文摘Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.
基金supported by National Technology Support Project (Grant Nos. 2009BAC51B04, 2007BAC29B01)Key Knowledge Innovation Programs of the Chinese Academy of Sciences (Grant No. KZCX2-YW-220)+1 种基金National Natural Science Foundation of China (Grant Nos. 40575047 and 40705036)the New Technology Projects of China Meteorological Administration (Grant No. CMATG2009MS01)
文摘Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weather Forecast ERA-40 reanalysis data and monthly rainfall data from 79 stations in Northeast China. The results show that the interannual variation in rainfall over Northeast China is mainly dominated by a cold vortex in early summer (May-June) and by the East Asian summer monsoon in late summer (July-August). In early summer, corresponding to increased rainfall in Northeast China, an anomalous cyclonic anomaly tilted westward with height appears to the northwest and cold vortices occur frequently. In late summer, the rainfall anomaly is mainly controlled by a northward shift of the local East Asian jet stream in the upper troposphere and the northwest extension of the western Pacific subtropical high (WPSH) in the lower troposphere. The enhanced southwesterly anomaly in the west of the WPSH transports more moisture into Northeast China and results in more rainfall. In addition, compared with that in July, the rainfall in Northeast China in August is also influenced by a mid- and high-latitude blocking high over Northeast Asia.