将氢氧化钠作为沉淀剂,以无水氯化镁为原料,采用双向沉淀法制备超细氢氧化镁(MH),在制备过程中引入硅聚醚使氢氧化镁表面有机化。考察了硅聚醚的添加方式、硅聚醚的添加量、反应温度和搅拌速度等因素对氢氧化镁浆料的过滤性能的影响。...将氢氧化钠作为沉淀剂,以无水氯化镁为原料,采用双向沉淀法制备超细氢氧化镁(MH),在制备过程中引入硅聚醚使氢氧化镁表面有机化。考察了硅聚醚的添加方式、硅聚醚的添加量、反应温度和搅拌速度等因素对氢氧化镁浆料的过滤性能的影响。利用接触角测定仪、纳米粒度及Zeta电位分析仪、傅里叶红外光谱仪、同步热分析仪等对氢氧化镁粉体的接触角、粒径、表面结构和热稳定性进行了表征。研究结果表明:在硅聚醚的添加方式为在氢氧化钠溶液中添加硅聚醚[Mg(OH)_(2)-Ⅱ],每100 g MH中硅聚醚的添加量为3 g,反应温度为60℃,搅拌速度为800 r/min的条件下,氢氧化镁浆料的过滤性能最好,过滤速度最快为4.79×10^(-4)m/s;在最佳条件下制备的氢氧化镁的接触角比未改性氢氧化镁提高了6倍多;FT-IR分析证明了硅聚醚成功地吸附在氢氧化镁的表面;热分析表明了改性氢氧化镁的热稳定性明显提高。展开更多
Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil s...Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].展开更多
文摘将氢氧化钠作为沉淀剂,以无水氯化镁为原料,采用双向沉淀法制备超细氢氧化镁(MH),在制备过程中引入硅聚醚使氢氧化镁表面有机化。考察了硅聚醚的添加方式、硅聚醚的添加量、反应温度和搅拌速度等因素对氢氧化镁浆料的过滤性能的影响。利用接触角测定仪、纳米粒度及Zeta电位分析仪、傅里叶红外光谱仪、同步热分析仪等对氢氧化镁粉体的接触角、粒径、表面结构和热稳定性进行了表征。研究结果表明:在硅聚醚的添加方式为在氢氧化钠溶液中添加硅聚醚[Mg(OH)_(2)-Ⅱ],每100 g MH中硅聚醚的添加量为3 g,反应温度为60℃,搅拌速度为800 r/min的条件下,氢氧化镁浆料的过滤性能最好,过滤速度最快为4.79×10^(-4)m/s;在最佳条件下制备的氢氧化镁的接触角比未改性氢氧化镁提高了6倍多;FT-IR分析证明了硅聚醚成功地吸附在氢氧化镁的表面;热分析表明了改性氢氧化镁的热稳定性明显提高。
基金supported by the Natural Science Foundation of China (No.11901062)the Sichuan Natural Science Foundation (No.2024NSFSC0417)。
文摘Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].