Litbium intercalated bilayer graphene has been investigated using first-principles density functional theory calculations. Re- sults show that there exist AB and AA stacking sequences for bilayer graphene in which the...Litbium intercalated bilayer graphene has been investigated using first-principles density functional theory calculations. Re- sults show that there exist AB and AA stacking sequences for bilayer graphene in which the latter is more favorable for the Li storage and the former will evolve into the latter with the intercalation of Li ions. The relationship between the interlayer dis- tance of two graphene sheets and the intercalated capacity of Li ions is discussed, It is found that structural defect is identified to store Li ions more favorably than pristine bilayer graphene and an isolated C atom vacancy in bilayer graphene can capture three Li ions between two graphene sheets.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50802089 and 51072183)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. [2008] 890)the Natural Science Foundation of Zhejiang Province (Grant No. Y4090280)
文摘Litbium intercalated bilayer graphene has been investigated using first-principles density functional theory calculations. Re- sults show that there exist AB and AA stacking sequences for bilayer graphene in which the latter is more favorable for the Li storage and the former will evolve into the latter with the intercalation of Li ions. The relationship between the interlayer dis- tance of two graphene sheets and the intercalated capacity of Li ions is discussed, It is found that structural defect is identified to store Li ions more favorably than pristine bilayer graphene and an isolated C atom vacancy in bilayer graphene can capture three Li ions between two graphene sheets.