By using variational method, the multiplicity of solutions for nonlinear biharmonic equation involving critical parameter and critical exponent are established.
This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉...This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉 0,x x∈Ω,u=0,x∈ δΩ,where u ∈ W01,P is a bounded domain in R^N(N 〉 p 〉 1) with smooth boundary δΩ, 2≤p ≤q〈p,p=Np/N-p,λ,μ〉0. It reaches the conclusions that this problem has at least one positive solution in the different cases. It is discussed the existences of positivesolutions of the Dirichlet problem for the p-mean curvature operator with critical exponentby using Nehari-type duality property firstly. As p = 2, q = p, the result is correspond tothat of Laplace operator.展开更多
文摘By using variational method, the multiplicity of solutions for nonlinear biharmonic equation involving critical parameter and critical exponent are established.
基金Supported by the National Natural Science Foundation of China(10171032) Supported by the Guangdong Provincial Natural Science Foundation of China(011606)
文摘This paper is concerned with the existence of positive solutions of the followingDirichlet problem for p-mean curvature operator with critical exponent: -div((1 +|↓△u|^2 )p-2/2 ↓△u) = λup-1+μ u=q-1,u 〉 0,x x∈Ω,u=0,x∈ δΩ,where u ∈ W01,P is a bounded domain in R^N(N 〉 p 〉 1) with smooth boundary δΩ, 2≤p ≤q〈p,p=Np/N-p,λ,μ〉0. It reaches the conclusions that this problem has at least one positive solution in the different cases. It is discussed the existences of positivesolutions of the Dirichlet problem for the p-mean curvature operator with critical exponentby using Nehari-type duality property firstly. As p = 2, q = p, the result is correspond tothat of Laplace operator.