Ag-modified TiO2 nanoflowers were prepared using a two-step process. The experimental process is green and free from contamination and can be synthesized directly at room temperature. Compared with pure TiO2, Ag-modif...Ag-modified TiO2 nanoflowers were prepared using a two-step process. The experimental process is green and free from contamination and can be synthesized directly at room temperature. Compared with pure TiO2, Ag-modified TiO2 enhances the absorption of visible light and effectively promotes the detachment of photoelectron pairs, Ag-TiO2 has a significantly enhanced visible light response activity to photodecomposition of methyl orange(MO). It is shown that the strong interaction between Ag nanoparticles and TiO2 enhances the photocatalytic activity of TiO2 nanoflowers. The self-made open-air reactor was used to test the photocatalytic performance of different samples. The results showed that Ag-modified TiO2 nanoflowers had excellent photodegradation ability. After repeated photodegradation of MO, Ag-modified TiO2 nanoflowers showed good stability.展开更多
基金Fund by the National Natural Science Foundation of China(51502005,51602005,and 51702003)the Key Foundation for Young Talents in College of Anhui Province(gxyq ZD2016081)the Quality Engineering Project in Colleges and Universities of Anhui Province(2017sxzx15 and 2018zygc012)
文摘Ag-modified TiO2 nanoflowers were prepared using a two-step process. The experimental process is green and free from contamination and can be synthesized directly at room temperature. Compared with pure TiO2, Ag-modified TiO2 enhances the absorption of visible light and effectively promotes the detachment of photoelectron pairs, Ag-TiO2 has a significantly enhanced visible light response activity to photodecomposition of methyl orange(MO). It is shown that the strong interaction between Ag nanoparticles and TiO2 enhances the photocatalytic activity of TiO2 nanoflowers. The self-made open-air reactor was used to test the photocatalytic performance of different samples. The results showed that Ag-modified TiO2 nanoflowers had excellent photodegradation ability. After repeated photodegradation of MO, Ag-modified TiO2 nanoflowers showed good stability.