We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling struct...We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .展开更多
A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-wall...A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and for optical path-length balancing are needed. Bragg-angle diffractions are observed as strong optical extinction that is tunable with changing the angle of incidence. This device is important for the design of efficient filters, beam splitters, and photonic devices.展开更多
The quickly increasing data transfer load requires an urgent revolution in current optical communication. Orbital angular momentum(OAM) multiplexing is a potential candidate with its ability to considerably enhance th...The quickly increasing data transfer load requires an urgent revolution in current optical communication. Orbital angular momentum(OAM) multiplexing is a potential candidate with its ability to considerably enhance the capacity of communication. However, the lack of a compact, efficient, and integrated OAM(de)multiplexer prevents it from being widely applied. By attaching vortex gratings onto the facets of a few-mode fiber, we demonstrate an integrated fiber-based OAM(de)multiplexer. A vortex grating fabricated on the fiber facet enables the direct multiplexing of OAM states at one port and the demultiplexing of OAM states at the other port. The measured bit error rate of the carrier signal after propagating through a 5-km few-mode fiber confirms the validity and effectiveness of the proposed approach. The scheme offers advantages in future high-capacity OAM communication based on optical fiber.展开更多
文摘We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .
文摘A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and for optical path-length balancing are needed. Bragg-angle diffractions are observed as strong optical extinction that is tunable with changing the angle of incidence. This device is important for the design of efficient filters, beam splitters, and photonic devices.
基金National Natural Science Foundation of China(NSFC)(U1701661,61427819,61525502,61435006,11604218,61601199,61775085,61405121)Science and Technology Innovation Commission of Shenzhen(KQCS2015032416183980,KQJSCX20160226193555889,KQTD2015071016560101,KQTD2017033011044403,ZDSYS201703031605029)+2 种基金Leading Talents of Guangdong Province(00201505)Natural Science Foundation of Guangdong Province(2016A030312010,2017A030313351)National Key Basic Research Program of China(973)(2015CB352004)
文摘The quickly increasing data transfer load requires an urgent revolution in current optical communication. Orbital angular momentum(OAM) multiplexing is a potential candidate with its ability to considerably enhance the capacity of communication. However, the lack of a compact, efficient, and integrated OAM(de)multiplexer prevents it from being widely applied. By attaching vortex gratings onto the facets of a few-mode fiber, we demonstrate an integrated fiber-based OAM(de)multiplexer. A vortex grating fabricated on the fiber facet enables the direct multiplexing of OAM states at one port and the demultiplexing of OAM states at the other port. The measured bit error rate of the carrier signal after propagating through a 5-km few-mode fiber confirms the validity and effectiveness of the proposed approach. The scheme offers advantages in future high-capacity OAM communication based on optical fiber.