期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis of spherical nano-ZSM-5 zeolite with intergranular mesoporous for alkylation of ethylbenzene with ethanol to produce m-diethylbenzene
1
作者 Siyue Wang Jinhong Li +5 位作者 Qingxin Xu shengjie song Yu'ni Jiang Lidong Chen Xin Shi Weiguo Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期298-309,共12页
Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to devel... Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to develop efficient and stable heterogeneous catalysts.Here,the spherical nano-ZSM-5 zeolite with abundant intergranular mesoporous is synthesized by the seed-mediated growth method for alkylation of EB with ethanol to produce m-DEB.The results show that the spherical nano-ZSM-5 zeolite exhibits better stability and higher alkylation activity at a lower temperature than those of commercial micropore ZSM-5.And then,the spherical nano-ZSM-5 is further modified by La_(2)O_(3) through acid treatment followed by immersion method.The acid treatment causes nano-ZSM-5 to exhibit the increased pore size but decreased the acid sites,and subsequent La_(2)O_(3) loading reintroduces the weak acid sites.As a result,the HNO_(3)-La_(2)O_(3)-modified catalyst exhibits a slight increase in EB conversion and DEB yield in comparison with unmodified one,and meanwhile,it still maintains high m-DEB selectivity.The catalyst after acid treatment achieves higher catalytic stability besides maintaining the high alkylation activity of EB with ethanol.The present study on the spherical nano-HZSM-5 zeolite and its modification catalyst with excellent alkylation ability provides new insights into the production of mDEB. 展开更多
关键词 Zeolite Modification Alkylation reaction m-diethylbenzene Catalyst FIXED-BED
下载PDF
CPT1A in cancer: Tumorigenic roles and therapeutic implications
2
作者 shengjie song ZHIZHOU SHI 《BIOCELL》 SCIE 2023年第10期2207-2215,共9页
Metabolic reprogramming frequently occurs in the majority of cancers,wherein fatty acid oxidation(FAO)is usually induced and serves as a compensatory mechanism to improve energy consumption.Carnitine palmitoyltransfer... Metabolic reprogramming frequently occurs in the majority of cancers,wherein fatty acid oxidation(FAO)is usually induced and serves as a compensatory mechanism to improve energy consumption.Carnitine palmitoyltransferase 1A(CPT1A)is the rate-limiting enzyme for FAO and is widely involved in tumor growth,metastasis,and chemo-/radio-resistance.This review summarizes the most recent advances in understanding the oncogenic roles and mechanisms of CPT1A in tumorigenesis,including in proliferation and tumor growth,invasion and metastasis,and the tumor microenvironment.Importantly,CPT1A has been shown to be a biomarker for diagnosis and prognosis prediction and proved to be a candidate therapeutic target,especially for the treatment of drug-and radiation-resistant tumors.In summary,CPT1A plays remarkable roles in promoting cancer progression and is a potential anticancer therapeutic target. 展开更多
关键词 CPT1A Fatty acid oxidation Target therapy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部