Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a ...Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.展开更多
Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor t...Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.展开更多
Aqueous Mg ion batteries(AMIBs)show great potential in energy storage for their advantages of high capacity,abundant resource,and environmental friendliness.However,the development of AMIBs is limited due to the scarc...Aqueous Mg ion batteries(AMIBs)show great potential in energy storage for their advantages of high capacity,abundant resource,and environmental friendliness.However,the development of AMIBs is limited due to the scarcity of suitable anode materials.In this study,a new polymer anode material(PNTAQ)with flower-like nanosheet structure is synthesized for aqueous Mg-Na hybrid-ion battery(AMNHIB).PNTAQ possess carbonyl functional groups which can be oxidized and reduced reversibly in aqueous solution containing alkaline metal ions.PNTAQ displays a discharge specific capacity of 245 mAh g^(−1)at 50 mA g^(−1)in 1 M MgCl_(2)+0.5 M NaCl electrolyte,which is much higher than that in single 1 M MgCl_(2)or 0.5 M NaCl electrolyte.Even cycling at 1000 mA g^(−1)for 1000 times,the capacity retention can still maintain at 87.2%.A full Mg-Na hybrid-ion cell is assembled by employingβ-MnO_(2)as cathode and PNTAQ as anode material,it exhibits a specific capacity of 91.6 mAh g^(−1)at 100 mA g^(−1).The polymer electrode material well maintains its framework structure during the discharge/charge cycling process of the hybrid-ion battery.展开更多
Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Line...Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Lineage S in southern China and Vietnam,and Lineage W in western China.However,whether the ecological niche is conserved or divergent among these three lineages is unknown.In the present study,we used ecological niche models in geographical space to study the ecological differences among lineages.We compared the niche overlap in environmental space to test niche conservatism and niche divergence.Our results showed that the three lineages of N.atra shared an ecological niche space between Lineages E and S/W,with the climatic niches of Lineages S and W representing a specialized fraction of the climatic niche of Lineage E.We speculated that the niche divergence between Lineages S and W was a consequence of geographical barriers limitinggeneflow.Ourstudyprovides evidence for lineage diversification associated with both geographical isolation and climatic niche evolution,suggesting that early niche divergence between Lineages S and W,followed by niche conservatism,causes niche divergence among lineages.展开更多
In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tact...In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tactic can severely hamper carrier transport due to pronounced point defect scattering,particularly in materials with inherently low carrier mean-free-path.Conversely,dilute doping,although minimally affecting carrier mobility,frequently fails to optimize other vital thermoelectric parameters.Herein,we present a more nuanced dilute doping strategy in GeTe,leveraging the multifaceted roles of small-size metal atoms.A mere 4%CuPbSbTe_(3)introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials.Additionally,the formation of multiscale microstructures,including zero-dimensional Cu interstitials,one-dimensional dislocations,two-dimensional planar defects,and three-dimensional nanoscale amorphous GeO_(2)and Cu_(2)GeTe_(3)precipitates,along with the ensuing lattice softening,contributes to an ultralow lattice thermal conductivity.Intriguingly,dilute CuPbSbTe_(3)doping incurs only a marginal decrease in carrier mobility.Subsequent trace Cd doping,employed to alleviate the bipolar effect and align the valence bands,yields an impressive figure-of-merit of 2.03 at 623 K in(Ge_(0.97)Cd_(0.03)Te)_(0.96)(CuPbSbTe_(3))_(0.04).This leads to a high energyconversion efficiency of 7.9%and a significant power density of 3.44 W cm^(-2)at a temperature difference of 500 K.These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.展开更多
Currently,the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide.COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon(IFN-I)signal,along with limited activation of ...Currently,the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide.COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon(IFN-I)signal,along with limited activation of antiviral immune responses as well as enhanced viral infectivity.Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways.However,it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection.In the current study,we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA(mtDNA),which in turn triggers cGAS to activate IFN-I signaling.As countermeasures,SARS-CoV-2 nucleocapsid(N)protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling.Mechanically,N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation(LLPS),subsequently impairs the double-strand DNA(dsDNA)detection ability of cGAS.Taken together,our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.展开更多
To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_...To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_(2-x)Sb_(x)Te_(3)and n-type Bi_(2)Te_(3-x)Se_(x) legs has become a major obstacle for the improvement of cooling devices to achieve higher efficiency.In our previous study,novel n-type Bi_(2-x)Sb_(x)Te_(3)alloy has been pro-posed via manipulating donor-like effect as an alternative to mainstream n-type Bi_(2)Te_(3-x)Se_(x).However,the narrow bandgap of Bi_(2-x)Sb_(x)Te_(3)provoked severe bipolar effect that constrained the further improvement of zT near room temperature.Herein,we have implemented band gap engineering in n-type Bi_(1.5)Sb_(0.5)Te_(3)by employing isovalent Se substitution to inhibit the undesired intrinsic excitation and achieve the dis-tinguished room-temperature zT.First,the preferential occupancy of Se at Te^(2)site appropriately enlarges the band gap,thereby concurrently improving the Seebeck coefficient and depressing the bipolar thermal conductivity.In addition,the Se alloying mildly suppresses the compensation mechanism and essentially preserves the already optimized carrier concentration,which maintains the peak zT near room tempera-ture.Moreover,the large strain field and mass fluctuation generated by Se alloying leads to the remark-able reduction of lattice thermal conductivity.Accordingly,the zT value of Bi_(1.5)Sb_(0.5)Te_(2.8)Se_(0.2)reaches 1.0 at 300 K and peaks 1.1 at 360 K,which surpasses that of most well-known room-temperature n-type thermoelectric materials.These results pave the way for n-type Bi_(2-x)Sb_(x)Te_(3)alloys to become a new and promising top candidate for large-scale solid-state cooling applications.展开更多
Na superionic conductor(NASICON)-type Li_(1.5)Al_(0.5)Ge_(0.5)P_(3)O_(12)(LAGP)solid state electrolytes(SSEs)have attracted significant interests thanks to the prominent ionic conductivity(>10^(–4)S·cm^(–1))...Na superionic conductor(NASICON)-type Li_(1.5)Al_(0.5)Ge_(0.5)P_(3)O_(12)(LAGP)solid state electrolytes(SSEs)have attracted significant interests thanks to the prominent ionic conductivity(>10^(–4)S·cm^(–1))at room temperature and superb stability in air.Unfortunately,its application has been hindered by the lithium dendrites and the intrinsic interfacial instability of LAGP towards metallic Li,etc.Herein,by magnetron sputtering(MS),an ultrathin Al film is deposited on the surface of the LAGP pellet(Al-LAGP).By in-situ alloying reaction,the spontaneously formed LiAl buffer layer inhibits the side reaction between LAGP SSEs and Li metal,induces the uniform distribution of interfacial electric field as well.Density functional theory(DFT)calculations demonstrate that the LiAl alloy surface promotes the diffusion of lithium atoms due to the lower energy barrier,thereby inhibiting the formation of lithium dendrites.Consequently,the Li/Al-LAGP-Al/Li symmetric cells show a low resistance of 210Ωand a durable lifespan over 1,200 h at a high current density of 0.1 mA·cm^(-2).Assembled all solid state lithium metal batteries(ASSLMBs)with LiFePO_(4)(LFP)cathode significantly improve cycle stability and rate performance,proving a promising stabilization strategy towards the NASIOCN type electrolyte/anode interface in solid state Li metal batteries.展开更多
With the rapid increase in photoelectric conversion efficiency of organic photovoltaics(OPVs),prolonging the operational lifetime of devices becomes one of the critical prerequisites for commercial applications.Guided...With the rapid increase in photoelectric conversion efficiency of organic photovoltaics(OPVs),prolonging the operational lifetime of devices becomes one of the critical prerequisites for commercial applications.Guided by the theoretical calculations of molecular stacking and miscibility,we proposed an effective approach to simultaneously improve device performance and thermal stability of high-efficiency OPVs by refining the aggregation of Y-series acceptors.The key to this approach is deliberately designing an asymmetric Y-series acceptor,named Y6-CNO,which acts as a third component regulator to finely tune the degree of acceptor aggregation and crystallization in the benchmark PM6:Y6-BO system.Strikingly,a champion photovoltaic efficiency of 18.0%was achieved by introducing 15 wt%Y6-CNO into the PM6:Y6-BO system,significantly higher than the control binary cell(16.7%).Moreover,annealing at 100°C for over 1,200 h does not markedly affect the photovoltaic performance of the optimal ternary devices,maintaining above 95%of the initial performance and exhibiting an exceptionally high T_(80)lifetime of 9,000 h under continuous thermal annealing.By contrast,binary devices suffer from excessive crystallization of acceptors with long-term annealing.Additionally,mixing thermodynamics combined with morphological characterizations were employed to elucidate the microstructure-thermal stability relationships.The ternary OPVs consisting of symmetric and asymmetric homologous acceptors form better charge transport channels and can effectively suppress excessive aggregation of acceptors under long-term annealing.This work demonstrates the effectiveness of refining acceptor aggregation via molecular design for highly efficient and stable nonfullerene-based OPVs.展开更多
Seeds establish dormancy to delay germination until the arrival of a favorable growing season.In this study,we identify a fate switch comprised of the MKK3–MPK7 kinase cascade and the ethylene response factor ERF4 th...Seeds establish dormancy to delay germination until the arrival of a favorable growing season.In this study,we identify a fate switch comprised of the MKK3–MPK7 kinase cascade and the ethylene response factor ERF4 that is responsible for the seed state transition from dormancy to germination.We show that dormancy-breaking factors activate the MKK3–MPK7 module,which affects the expression of some a-EXPANSIN(EXPA)genes to control seed dormancy.Furthermore,we identify a direct downstream substrate of this module,ERF4,which suppresses the expression of these EXPAs by directly binding to the GCC boxes in their exon regions.The activated MKK3–MPK7 module phosphorylates ERF4,leading to its rapid degradation and thereby releasing its inhibitory effect on the expression of these EXPAs.Collectively,our work identifies a signaling chain consisting of protein phosphorylation,degradation,and gene transcription,by which the germination promoters within the embryo sense and are activated by germination signals from ambient conditions.展开更多
PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.I...PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.In this work,PbMo_(6)S_(8) bulks were prepared through a solid‐state sintering process using PbS,Mo,and MoS_(2) as raw materials.The phase evolution mechanism during the sintering of PbMo_(6)S_(8) was studied in detail.It was found that during sintering at 750℃ for 24 h,both the S and Pb atoms diffuse into the Mo and MoS_(2) particles,leading to the formation of the PbMo_(6)S_(8) phase.After sintering at 950℃ for 72 h,a high superconducting phase content was obtained in the bulk;however,numerous pores remained.Therefore,in order to obtain a higher density for the bulk,a two‐step sintering process was developed.Based on this technique,PbMo_(6)S_(8) bulks with a higher bulk density and a higher superconducting phase content were obtained.This study provides an effective method for the fabrication of high‐quality precursor powders,which can be the foundation for the future fabrication of PbMo_(6)S_(8) superconducting long wires or tapes for practical applications.展开更多
β-GaOis an ultra-wide band-gap semiconductor with promising applications in UV optical detectors,Schottky barrier diodes, field-effect transistors and substrates for light-emitting diodes. However, the preparation of...β-GaOis an ultra-wide band-gap semiconductor with promising applications in UV optical detectors,Schottky barrier diodes, field-effect transistors and substrates for light-emitting diodes. However, the preparation of large β-GaOcrystals is undeveloped and many properties of this material have not been discovered yet. In this work, 2-inch β-GaOsingle crystals were grown by using an edge-defined film-fed growth method. The high quality of the crystal has been proved by high-resolution X-ray diffraction with 19.06 arcsec of the full width at half maximum. The electrical properties and optical properties of both the unintentionally doped and Si-doped β-GaOcrystals were investigated systematically.展开更多
Indium gallium nitride(InGaN)-based light-emitting diodes(LEDs)are considered a promising candidate for red-green-blue(RGB)micro displays.Currently,the blue and green LEDs are efficient,while the red ones are ineffici...Indium gallium nitride(InGaN)-based light-emitting diodes(LEDs)are considered a promising candidate for red-green-blue(RGB)micro displays.Currently,the blue and green LEDs are efficient,while the red ones are inefficient for such applications.This paper reports our work of creating efficient InGaN-based orange and red LEDs on silicon(111)substrates at low current density.Based on the structure of InGaN yellow LEDs,by simply reducing the growth temperature of all the yellow quantum wells(QWs),we obtained 599 nm orange LEDs with peak wall-plug efficiency(WPE)of 18.1%at 2 A/cm^2.An optimized QW structure was proposed that changed two of the nine yellow QWs to orange ones.Compared with the sample containing nine orange QWs,the sample with two orange QWs and seven yellow QWs showed similar emission spectra but a much higher peak WPE up to 24.0%at 0.8 A/cm^2 with a wavelength of 608 nm.The improvement of peak WPE can be attributed to the improved QW quality and the reduced active recombination volume.Subsequently,a series of efficient InGaN-based orange and red LEDs was demonstrated.With further development,the InGaN-based red LEDs are believed to be attainable and can be used in micro LED displays.展开更多
基金supported by grants from the National Key Research and Development Program of China(2023YFF1000404,2022YFF10001501)the National Natural Science Foundation of China(32171971)。
文摘Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403202)the National Natural Science Foundation of China(Grant Nos.NSFC-12074335,11974095,5177115,11974095,and 12188101)the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JM-028).
文摘Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.
基金supported by the China Postdoctoral Science Foundation(2018 M630340,2019 T120254)the Fundamental Research Funds for the Central University
文摘Aqueous Mg ion batteries(AMIBs)show great potential in energy storage for their advantages of high capacity,abundant resource,and environmental friendliness.However,the development of AMIBs is limited due to the scarcity of suitable anode materials.In this study,a new polymer anode material(PNTAQ)with flower-like nanosheet structure is synthesized for aqueous Mg-Na hybrid-ion battery(AMNHIB).PNTAQ possess carbonyl functional groups which can be oxidized and reduced reversibly in aqueous solution containing alkaline metal ions.PNTAQ displays a discharge specific capacity of 245 mAh g^(−1)at 50 mA g^(−1)in 1 M MgCl_(2)+0.5 M NaCl electrolyte,which is much higher than that in single 1 M MgCl_(2)or 0.5 M NaCl electrolyte.Even cycling at 1000 mA g^(−1)for 1000 times,the capacity retention can still maintain at 87.2%.A full Mg-Na hybrid-ion cell is assembled by employingβ-MnO_(2)as cathode and PNTAQ as anode material,it exhibits a specific capacity of 91.6 mAh g^(−1)at 100 mA g^(−1).The polymer electrode material well maintains its framework structure during the discharge/charge cycling process of the hybrid-ion battery.
基金supported by grants from the National Natural Science Foundation of China (32071493, 31971414 and 31770443)Finance Science and Technology Project of Hainan Province (ZDYF2018219)
文摘Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Lineage S in southern China and Vietnam,and Lineage W in western China.However,whether the ecological niche is conserved or divergent among these three lineages is unknown.In the present study,we used ecological niche models in geographical space to study the ecological differences among lineages.We compared the niche overlap in environmental space to test niche conservatism and niche divergence.Our results showed that the three lineages of N.atra shared an ecological niche space between Lineages E and S/W,with the climatic niches of Lineages S and W representing a specialized fraction of the climatic niche of Lineage E.We speculated that the niche divergence between Lineages S and W was a consequence of geographical barriers limitinggeneflow.Ourstudyprovides evidence for lineage diversification associated with both geographical isolation and climatic niche evolution,suggesting that early niche divergence between Lineages S and W,followed by niche conservatism,causes niche divergence among lineages.
基金supported by the National Key R&D Program of China(2021YFB1507403)the National Natural Science Foundation of China(52071218,and 11874394)+1 种基金the Shenzhen University 2035 Program for Excellent Research(00000218)The University Synergy Innovation Program of Anhui Province(GXXT-2020-003)。
文摘In thermoelectrics,doping is essential to augment the figure of merit.Traditional strategy,predomina ntly heavy doping,aims to optimize carrier concentration and restrain lattice thermal conductivity.However,this tactic can severely hamper carrier transport due to pronounced point defect scattering,particularly in materials with inherently low carrier mean-free-path.Conversely,dilute doping,although minimally affecting carrier mobility,frequently fails to optimize other vital thermoelectric parameters.Herein,we present a more nuanced dilute doping strategy in GeTe,leveraging the multifaceted roles of small-size metal atoms.A mere 4%CuPbSbTe_(3)introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials.Additionally,the formation of multiscale microstructures,including zero-dimensional Cu interstitials,one-dimensional dislocations,two-dimensional planar defects,and three-dimensional nanoscale amorphous GeO_(2)and Cu_(2)GeTe_(3)precipitates,along with the ensuing lattice softening,contributes to an ultralow lattice thermal conductivity.Intriguingly,dilute CuPbSbTe_(3)doping incurs only a marginal decrease in carrier mobility.Subsequent trace Cd doping,employed to alleviate the bipolar effect and align the valence bands,yields an impressive figure-of-merit of 2.03 at 623 K in(Ge_(0.97)Cd_(0.03)Te)_(0.96)(CuPbSbTe_(3))_(0.04).This leads to a high energyconversion efficiency of 7.9%and a significant power density of 3.44 W cm^(-2)at a temperature difference of 500 K.These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.
基金supported by the National Natural Science Foundation of China(52071218)Shenzhen Science and Technology Innovation Commission(20200731215211001 and 20200814110413001)Guangdong Basic and Applied Basic Research Foundation(2022A1515012492)。
基金supported by the National Key R&D Program of China (2020YFA0908700)Guangdong Provincial Key R&D Program for Covid 19 (232020012620600001)+4 种基金National Natural Science Foundation of China (82025001,31970700,32170876)Guangdong Basic and Applied Basic Research Foundation (2020B1515120090)Natural Science Foundation of Guangdong Province,China (2021A1515012179)Guangdong Clinical Research Center for Critical Care Medicine (2020B1111170005)the Sun Yat‑sen University Clinical Research Program 5010 (2019002).
文摘Currently,the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide.COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon(IFN-I)signal,along with limited activation of antiviral immune responses as well as enhanced viral infectivity.Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways.However,it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection.In the current study,we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA(mtDNA),which in turn triggers cGAS to activate IFN-I signaling.As countermeasures,SARS-CoV-2 nucleocapsid(N)protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling.Mechanically,N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation(LLPS),subsequently impairs the double-strand DNA(dsDNA)detection ability of cGAS.Taken together,our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.
基金The work is supported by the National Natural Science Foundation of China(No.52071218)Shenzhen Science and Technology Innovation Commission(Nos.20200731215211001,20200814110413001)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012492).The authors also appreciate the Instrumental Analysis Center of Shenzhen University.
文摘To date,the benchmark Bi_(2)Te_(3)-based alloys are still the only commercial material system used for ther-moelectric solid-state refrigeration.Nonetheless,the conspicuous performance imbalance between the p-type Bi_(2-x)Sb_(x)Te_(3)and n-type Bi_(2)Te_(3-x)Se_(x) legs has become a major obstacle for the improvement of cooling devices to achieve higher efficiency.In our previous study,novel n-type Bi_(2-x)Sb_(x)Te_(3)alloy has been pro-posed via manipulating donor-like effect as an alternative to mainstream n-type Bi_(2)Te_(3-x)Se_(x).However,the narrow bandgap of Bi_(2-x)Sb_(x)Te_(3)provoked severe bipolar effect that constrained the further improvement of zT near room temperature.Herein,we have implemented band gap engineering in n-type Bi_(1.5)Sb_(0.5)Te_(3)by employing isovalent Se substitution to inhibit the undesired intrinsic excitation and achieve the dis-tinguished room-temperature zT.First,the preferential occupancy of Se at Te^(2)site appropriately enlarges the band gap,thereby concurrently improving the Seebeck coefficient and depressing the bipolar thermal conductivity.In addition,the Se alloying mildly suppresses the compensation mechanism and essentially preserves the already optimized carrier concentration,which maintains the peak zT near room tempera-ture.Moreover,the large strain field and mass fluctuation generated by Se alloying leads to the remark-able reduction of lattice thermal conductivity.Accordingly,the zT value of Bi_(1.5)Sb_(0.5)Te_(2.8)Se_(0.2)reaches 1.0 at 300 K and peaks 1.1 at 360 K,which surpasses that of most well-known room-temperature n-type thermoelectric materials.These results pave the way for n-type Bi_(2-x)Sb_(x)Te_(3)alloys to become a new and promising top candidate for large-scale solid-state cooling applications.
基金High-level Talents’Discipline Construction Fund of Shandong University(No.31370089963078)School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(No.DD29100027).
文摘Na superionic conductor(NASICON)-type Li_(1.5)Al_(0.5)Ge_(0.5)P_(3)O_(12)(LAGP)solid state electrolytes(SSEs)have attracted significant interests thanks to the prominent ionic conductivity(>10^(–4)S·cm^(–1))at room temperature and superb stability in air.Unfortunately,its application has been hindered by the lithium dendrites and the intrinsic interfacial instability of LAGP towards metallic Li,etc.Herein,by magnetron sputtering(MS),an ultrathin Al film is deposited on the surface of the LAGP pellet(Al-LAGP).By in-situ alloying reaction,the spontaneously formed LiAl buffer layer inhibits the side reaction between LAGP SSEs and Li metal,induces the uniform distribution of interfacial electric field as well.Density functional theory(DFT)calculations demonstrate that the LiAl alloy surface promotes the diffusion of lithium atoms due to the lower energy barrier,thereby inhibiting the formation of lithium dendrites.Consequently,the Li/Al-LAGP-Al/Li symmetric cells show a low resistance of 210Ωand a durable lifespan over 1,200 h at a high current density of 0.1 mA·cm^(-2).Assembled all solid state lithium metal batteries(ASSLMBs)with LiFePO_(4)(LFP)cathode significantly improve cycle stability and rate performance,proving a promising stabilization strategy towards the NASIOCN type electrolyte/anode interface in solid state Li metal batteries.
基金supported by the National Natural Science Foundation of China(52073207,52121002)the Fundamental Research Funds for the Central Universities+1 种基金the Peiyang Scholar Program of Tianjin University for supportthe Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘With the rapid increase in photoelectric conversion efficiency of organic photovoltaics(OPVs),prolonging the operational lifetime of devices becomes one of the critical prerequisites for commercial applications.Guided by the theoretical calculations of molecular stacking and miscibility,we proposed an effective approach to simultaneously improve device performance and thermal stability of high-efficiency OPVs by refining the aggregation of Y-series acceptors.The key to this approach is deliberately designing an asymmetric Y-series acceptor,named Y6-CNO,which acts as a third component regulator to finely tune the degree of acceptor aggregation and crystallization in the benchmark PM6:Y6-BO system.Strikingly,a champion photovoltaic efficiency of 18.0%was achieved by introducing 15 wt%Y6-CNO into the PM6:Y6-BO system,significantly higher than the control binary cell(16.7%).Moreover,annealing at 100°C for over 1,200 h does not markedly affect the photovoltaic performance of the optimal ternary devices,maintaining above 95%of the initial performance and exhibiting an exceptionally high T_(80)lifetime of 9,000 h under continuous thermal annealing.By contrast,binary devices suffer from excessive crystallization of acceptors with long-term annealing.Additionally,mixing thermodynamics combined with morphological characterizations were employed to elucidate the microstructure-thermal stability relationships.The ternary OPVs consisting of symmetric and asymmetric homologous acceptors form better charge transport channels and can effectively suppress excessive aggregation of acceptors under long-term annealing.This work demonstrates the effectiveness of refining acceptor aggregation via molecular design for highly efficient and stable nonfullerene-based OPVs.
基金supported by the National Natural Science Foundation of China(grant nos.32000250 and 32170364)the China Postdoctoral Science Foundation(grant no.2020M682997)+2 种基金the Key Area Research and Development Program of Guangdong Province(grant no.2021B0707010006)the Science,Technology and Innovation Commission of Shenzhen Municipality(grant nos.KCXFZ-20201221173203009 and KCXFZ20211020164207012)the Dapeng New District Science and Technology Program(grant nos.KJYF202101-09 and RCTD20180102)。
文摘Seeds establish dormancy to delay germination until the arrival of a favorable growing season.In this study,we identify a fate switch comprised of the MKK3–MPK7 kinase cascade and the ethylene response factor ERF4 that is responsible for the seed state transition from dormancy to germination.We show that dormancy-breaking factors activate the MKK3–MPK7 module,which affects the expression of some a-EXPANSIN(EXPA)genes to control seed dormancy.Furthermore,we identify a direct downstream substrate of this module,ERF4,which suppresses the expression of these EXPAs by directly binding to the GCC boxes in their exon regions.The activated MKK3–MPK7 module phosphorylates ERF4,leading to its rapid degradation and thereby releasing its inhibitory effect on the expression of these EXPAs.Collectively,our work identifies a signaling chain consisting of protein phosphorylation,degradation,and gene transcription,by which the germination promoters within the embryo sense and are activated by germination signals from ambient conditions.
基金supported Northwest Institute of Non‐ferrous Metal Research Funding(No.YK2117).
文摘PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.In this work,PbMo_(6)S_(8) bulks were prepared through a solid‐state sintering process using PbS,Mo,and MoS_(2) as raw materials.The phase evolution mechanism during the sintering of PbMo_(6)S_(8) was studied in detail.It was found that during sintering at 750℃ for 24 h,both the S and Pb atoms diffuse into the Mo and MoS_(2) particles,leading to the formation of the PbMo_(6)S_(8) phase.After sintering at 950℃ for 72 h,a high superconducting phase content was obtained in the bulk;however,numerous pores remained.Therefore,in order to obtain a higher density for the bulk,a two‐step sintering process was developed.Based on this technique,PbMo_(6)S_(8) bulks with a higher bulk density and a higher superconducting phase content were obtained.This study provides an effective method for the fabrication of high‐quality precursor powders,which can be the foundation for the future fabrication of PbMo_(6)S_(8) superconducting long wires or tapes for practical applications.
文摘β-GaOis an ultra-wide band-gap semiconductor with promising applications in UV optical detectors,Schottky barrier diodes, field-effect transistors and substrates for light-emitting diodes. However, the preparation of large β-GaOcrystals is undeveloped and many properties of this material have not been discovered yet. In this work, 2-inch β-GaOsingle crystals were grown by using an edge-defined film-fed growth method. The high quality of the crystal has been proved by high-resolution X-ray diffraction with 19.06 arcsec of the full width at half maximum. The electrical properties and optical properties of both the unintentionally doped and Si-doped β-GaOcrystals were investigated systematically.
基金National Key Research and Development Program of China(2016YFB0400600,2016YFB0400601)National Natural Science Foundation of China(11604137,11674147,21405076,51602141,61604066,61704069)+1 种基金Key Research and Development Program of Jiangxi Province(20171BBE50052)Major Special Science and Technology Program of Jiangxi Province(20182ABC28003).
文摘Indium gallium nitride(InGaN)-based light-emitting diodes(LEDs)are considered a promising candidate for red-green-blue(RGB)micro displays.Currently,the blue and green LEDs are efficient,while the red ones are inefficient for such applications.This paper reports our work of creating efficient InGaN-based orange and red LEDs on silicon(111)substrates at low current density.Based on the structure of InGaN yellow LEDs,by simply reducing the growth temperature of all the yellow quantum wells(QWs),we obtained 599 nm orange LEDs with peak wall-plug efficiency(WPE)of 18.1%at 2 A/cm^2.An optimized QW structure was proposed that changed two of the nine yellow QWs to orange ones.Compared with the sample containing nine orange QWs,the sample with two orange QWs and seven yellow QWs showed similar emission spectra but a much higher peak WPE up to 24.0%at 0.8 A/cm^2 with a wavelength of 608 nm.The improvement of peak WPE can be attributed to the improved QW quality and the reduced active recombination volume.Subsequently,a series of efficient InGaN-based orange and red LEDs was demonstrated.With further development,the InGaN-based red LEDs are believed to be attainable and can be used in micro LED displays.