期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
青藏高原多年冻土区活动层水热特性研究进展 被引量:15
1
作者 马俊杰 李韧 +6 位作者 刘宏超 吴通华 肖瑶 杜宜臻 杨淑华 史健宗 乔永平 《冰川冻土》 CSCD 北大核心 2020年第1期195-204,共10页
青藏高原多年冻土作为我国冰冻圈的重要组成部分,其水热状况是影响寒区生态环境、陆气间水热交换、气候变化以及地面路基建设等的重要因素。为增进对青藏高原多年冻土区活动层水热特性的认识,对影响活动层水热特性的主要因素以及主要研... 青藏高原多年冻土作为我国冰冻圈的重要组成部分,其水热状况是影响寒区生态环境、陆气间水热交换、气候变化以及地面路基建设等的重要因素。为增进对青藏高原多年冻土区活动层水热特性的认识,对影响活动层水热特性的主要因素以及主要研究方法做进一步梳理,并指出了当前研究中的不足。研究认为,气象条件、植被覆盖度、土壤性质、积雪等是影响多年冻土区活动层水热过程的主要因素,目前针对活动层水热特性的研究主要通过对站点实测资料分析和模型模拟等方式展开。未来工作的重点应放在改进适合于高寒山区的陆面模式以及增强水热动态过程与气候系统的相互作用上。 展开更多
关键词 青藏高原 多年冻土 活动层 冻融过程 水热特性
下载PDF
Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China 被引量:4
2
作者 HU Guojie ZHAO Lin +6 位作者 LI Ren WU Tonghua WU Xiaodong PANG Qiangqiang XIAO Yao QIAO Yongping shi jianzong 《Chinese Geographical Science》 SCIE CSCD 2015年第6期713-727,共15页
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst... Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation. 展开更多
关键词 PERMAFROST coupled heat and mass transfer model (CoupModel) soil temperature soil moisture hydrothermal processes active layer
下载PDF
An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China 被引量:4
3
作者 HU Guojie ZHAO Lin +6 位作者 WU Xiaodong LI Ren WU Tonghua XIE Changwei QIAO Yongping shi jianzong CHENG Guodong 《Journal of Arid Land》 SCIE CSCD 2016年第2期232-240,共9页
Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil tem... Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model. 展开更多
关键词 soil temperature heat conduction equation daily amplitude boundary condition
下载PDF
青藏公路沿线多年冻土区土壤热通量参数化方案的优化和检验 被引量:1
4
作者 杜宜臻 李韧 +6 位作者 吴通华 谢昌卫 肖瑶 胡国杰 柏睿 史健宗 乔永平 《冰川冻土》 CSCD 北大核心 2018年第2期314-321,共8页
土壤热通量是地表能量平衡的重要分量,其估算方案在研究地表能量平衡研究中必不可少。利用青藏公路沿线5个站点0~20 cm的实测土壤层温、湿度及5 cm土壤热通量资料,以翁笃鸣气候学计算方案为基础建立了优化的5 cm土壤热通量计算方案。通... 土壤热通量是地表能量平衡的重要分量,其估算方案在研究地表能量平衡研究中必不可少。利用青藏公路沿线5个站点0~20 cm的实测土壤层温、湿度及5 cm土壤热通量资料,以翁笃鸣气候学计算方案为基础建立了优化的5 cm土壤热通量计算方案。通过唐古拉和西大滩两个独立站点的检验结果表明,优化方案的结果相对于原方案有较大的改善,唐古拉和西大滩5 cm土壤热通量均方根误差值分别减小了3.2 W·m^(-2)和4.8 W·m^(-2),而相对误差分别减小了61.9%和36.1%,即新方案能够较好地估算出青藏公路沿线多年冻土区5 cm土壤热通量。使用优化方案模拟了青藏公路沿线11个站点5 cm土壤热通量变化,结果显示,近十年青藏公路沿线土壤热通量呈现出增大的趋势,其中,5 cm土壤热通量增大了近1.0 W·m^(-2),而且各观测场的年平均土壤热通量值均大于0.0 W·m^(-2),表明就年尺度而言,热量有盈余,盈余热量用于加热下层土壤,引起活动层厚度增加,平均状况下土壤热通量每增大1.0 W·m^(-2),活动层厚度增大约21.0 cm。 展开更多
关键词 青藏公路 多年冻土 活动层 土壤热通量
下载PDF
Modeling permafrost properties in the Qinghai-Xizang(Tibet) Plateau 被引量:7
5
作者 HU GuoJie ZHAO Lin +8 位作者 WU XiaoDong LI Ren WU TongHua XIE ChangWei PANG QiangQiang XIAO Yao LI WangPing QIAO YongPing shi jianzong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第12期2309-2326,共18页
Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-bas... Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarioS. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-390 cm as a result of a 1-2℃ warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate. 展开更多
关键词 PERMAFROST COUPMODEL hydrothermal processes phase change soil temperature soil moisture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部