期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BERGMAN TYPE OPERATOR ON MIXED NORM SPACES WITH APPLICATIONS 被引量:27
1
作者 REN GUANGBIN shi jihuai 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1997年第3期265-276,共12页
The authors investigate the conditions for the boundedness of Bergman type operators Ps,t in mixed norm space L_(p),q(φ)on the unit ball of C^(n)(n≥1),and obtain a sufficient condition and a necessary condition for ... The authors investigate the conditions for the boundedness of Bergman type operators Ps,t in mixed norm space L_(p),q(φ)on the unit ball of C^(n)(n≥1),and obtain a sufficient condition and a necessary condition for general normal functionφ,and a sufficient and necessary condition forφ(r)=(1-r 2)αlogβ(2(1-r)-1)(α>0,β≥0).This generalizes the result of Forelli Rudin on Bergman operator in Bergman space.As applications,a more natural method is given to compute the duality of the mixed norm space,solve the Gleason's problem for mixed norm space and obtain the characterization of mixed norm space in terms of partial derivatives.Moreover,it is proved thatf∈L(0)∞,q(φ)iff all the functions(1-|z|2)|α||α|fzα(z)∈L(0)∞,q(φ)for holomorphic functionf,1≤q≤∞. 展开更多
关键词 Bergman projection Normal function Mixed norm space
原文传递
Coefficient multipliers of mixed norm space in the ball Dedicated to Professor Sheng GONG on the occasion of his 75th birthday 被引量:1
2
作者 shi jihuai REN Guangbin 《Science China Mathematics》 SCIE 2006年第11期1491-1503,共13页
In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q((?)1),Hu,v((?)2)) for the values of p, q, u, v in three cases: (i)0<p≤u≤∞, 0 < q≤min(1,v)≤frr. (ii) v =∞,0<p≤... In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q((?)1),Hu,v((?)2)) for the values of p, q, u, v in three cases: (i)0<p≤u≤∞, 0 < q≤min(1,v)≤frr. (ii) v =∞,0<p≤u≤∞, 1≤u, q≤∞. (iii) 1≤v≤2≤q≤∞, and 0<p≤u≤∞or 1≤p, u≤∞. The first case extends the result of Blasco, Jevtic, and Pavlovic in one variable. The third case generalizes partly the results of Jevtic, Jovanovic, and Wojtaszczyk to higher dimensions. 展开更多
关键词 Coefflcient multipliers mixed norm spaces holomorphic functions.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部