期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimation of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reflectance Spectroscopy:A Case Study 被引量:32
1
作者 REN Hong-Yan ZHUANG Da-Fang +3 位作者 A. N. SINGH PAN Jian-Jun QIU Dong-Sheng shi run-he 《Pedosphere》 SCIE CAS CSCD 2009年第6期719-726,共8页
Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiomet... Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination. 展开更多
关键词 data pre-processing heavy metal regression models soil iron spectral reflectance
下载PDF
基于土地利用回归模型的登革热疫情与社会环境要素的空间关系研究 被引量:2
2
作者 郑斓 李乔玄 +3 位作者 任红艳 施润和 白开旭 鲁亮 《中国媒介生物学及控制杂志》 CAS 2018年第3期226-230,234,共6页
目的探究社会经济与自然环境要素对登革热疫情空间分布的影响,为有效防控登革热提供依据。方法以蚊媒监测点周围0.5~6.0 km范围内的土地利用、人口密度和道路密度等社会环境要素作为土地利用回归(LUR)模型的输入变量,分析广州市社会经... 目的探究社会经济与自然环境要素对登革热疫情空间分布的影响,为有效防控登革热提供依据。方法以蚊媒监测点周围0.5~6.0 km范围内的土地利用、人口密度和道路密度等社会环境要素作为土地利用回归(LUR)模型的输入变量,分析广州市社会经济因素对登革热疫情空间分布的影响。采用留一交叉检验法对模型进行检验,即用n-1个样本建立回归方程,计算剩余1个样本的预测值,并与该样本的实测病例数进行比较。结果监测点不同范围内的社会环境变量对登革热疫情空间分布的贡献程度存在差异,半径为6、2、1、1和2 km缓冲区内的人口密度、道路密度、耕地、林地和农村居民用地的面积分别对登革热1 km有明显影响(R^2=0.567、0.512、0.275、0.106和0.041),而整体LUR模型调整R^2为0.648(F=55.944,P<0.01),预测值与实测值间的拟合精度达0.728 8,总体水平较好。结论社会经济要素在不同研究范围下对登革热疫情空间分布的影响不同,LUR模型可较好地预测登革热病例空间分布,从而为当地卫生部门防控登革热提供方法支持。 展开更多
关键词 登革热 空间分布 土地利用类型 人口密度 路网 广州市
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部