The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), ...The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), in which the pre-whitened based on PCA for observed signals is used, are researched. Aiming at the mixture signals, whose frequency components are overlapped by each other, a simulation of BSS to separate this type of mixture signals by using theory and approach of BSS has been done. The result shows that the BSS has some advantages what the traditional methodology of frequency analysis has not.展开更多
The laser bonding technology between the Zr41 Ti14 Cu12 Ni10 Be23 bulk metallic glass and zirconium metal was investigated under welding parameters of 1.3 kW and 7 m/min. The welded bead, microstructure, and micro-har...The laser bonding technology between the Zr41 Ti14 Cu12 Ni10 Be23 bulk metallic glass and zirconium metal was investigated under welding parameters of 1.3 kW and 7 m/min. The welded bead, microstructure, and micro-hardness of the welded joint were examined by Keyence, transmission electron microscopy, scanning electron microscopy, and Vickers hardness, respectively. The experimental results showed that the Zr41 Ti14 Cu12 Ni10 Be2 bulk metallic glass and zirconium metal were successfully bonded together. The Zr41 Ti14 Cu12 Ni10 Be2 in the base material zone maintained amorphous structure, and the welding fusion zone kept the hardness as high as as-received BMG. Therefore, the laser welding technology can be used to achieve successful bonding of bulk metallic glasses and crystallization metal.展开更多
We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggeste...We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.展开更多
We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from...We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.展开更多
A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving th...A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.展开更多
在熔化极活性气体保护焊(Metal active gas arc welding,MAG)焊接过程中,传统机器视觉熔池检测方法难以适应剧烈变化的强弧光和飞溅等噪声的干扰。为此,提出一种结合GAN与改进PSPNet的熔池深度学习检测方法,实现对熔池的动态跟踪与精准...在熔化极活性气体保护焊(Metal active gas arc welding,MAG)焊接过程中,传统机器视觉熔池检测方法难以适应剧烈变化的强弧光和飞溅等噪声的干扰。为此,提出一种结合GAN与改进PSPNet的熔池深度学习检测方法,实现对熔池的动态跟踪与精准检测。首先,通过生成对抗网络(Generative adversarial networks,GAN)中的解码器、编码器及小步数的反卷积模块,对焊接熔池图像进行增强,解决因强弧光和飞溅等噪声导致的图像模糊。然后,对不同位置的熔池形态进行力学现象分析,得出不同位置的熔池形成规律。最后,结合GAN网络与全位置熔池变化规律,对PSPNet网络进行改进,利用多层金字塔池化模块进行信息提取、空洞卷积大视野的获取全局信息、以及引入的Swish激活函数,对熔池进行动态分割。试验结果表明,该方法平均像素准确率和平均交并比等指标提高至88.03%和85.45%,网络模型训练时间比改进前提升19.05%,能够实现熔池动态跟踪,对机器人智能焊接有重要意义。展开更多
Solder bumps realize the mechanical and electrical interconnection between chips and substrates in surface mount components,such as flip chip, wafer level packaging and three-dimensional integration. With the trend to...Solder bumps realize the mechanical and electrical interconnection between chips and substrates in surface mount components,such as flip chip, wafer level packaging and three-dimensional integration. With the trend to smaller and lighter electronics,solder bumps decrease in dimension and pitch in order to achieve higher I/O density. Automated and nondestructive defect inspection of solder bumps becomes more difficult. Machine learning is a way to recognize the solder bump defects online and overcome the effect caused by the human eye-fatigue. In this paper, we proposed an automated and nondestructive X-ray recognition method for defect inspection of solder bumps. The X-ray system captured the images of the samples and the solder bump images were segmented from the sample images. Seven features including four geometric features, one texture feature and two frequency-domain features were extracted. The ensemble-ELM was established to recognize the defects intelligently. The results demonstrated the high recognition rate compared to the single-ELM. Therefore, this method has high potentiality for automated X-ray recognition of solder bump defects online and reliable.展开更多
As a century-old concept,superwettability has aroused the interest of researchers in the past decades,attributed to the discoveries of the mechanisms of special wetting phenomena in nature.Bio-inspired manufacturing o...As a century-old concept,superwettability has aroused the interest of researchers in the past decades,attributed to the discoveries of the mechanisms of special wetting phenomena in nature.Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications has become mainstream research,potentially alleviating the problem of water shortage and ice accidents.Superwetting surfaces for fog collection and anti-icing applications involve a reverse process,in which the former gathers water spontaneously,while the latter repels water.Contrastive analysis of the two is essential for the comprehensive understanding of superhydrophilic/superhydrophobic surfaces and boosting their applications.Herein,wetting theories and basic mechanisms for fog collection and anti-icing are briefly introduced.Then,manufacturing methods of bionic structures and surfaces are systematically reviewed after discussing the typical organisms with superwettability.Finally,conclusions are drawn and prospects for future development are proposed.展开更多
We demonstrated the application of sensors for ethanol gas detection.The ZnO nanowires based sensors with interdigital electrodes were fabricated,and a platform was constructed to test the properties of the sensors.To...We demonstrated the application of sensors for ethanol gas detection.The ZnO nanowires based sensors with interdigital electrodes were fabricated,and a platform was constructed to test the properties of the sensors.To acquire better response and shorter response/recovery time,the ZnO nanowires were modified with Au.The ethanol gas sensing performance of the pure sensors and those modified with Au nanoparticles were investigated for comparison,and the optimal test temperature of 350℃ was obtained.We found that the response/recovery time for the modified sensor towards 500 ppm of the ethanol gas was reduced by 1.35 and1.42 times compared with the pure sensors,and the sensitivities towards 500 and 10 ppm of the ethanol gas were also increased by 3.18 and 1.35 times,respectively.These proved the enhancement of the Au nanoparticles in the ZnO nanowires based sensors for ethanol gas sensing.展开更多
Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are...Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages.展开更多
Morpho butterfly wings show brilliant blue color,which has a close relationship with the hierarchical micro/nano structures on the surface of scales.When liquids such as methanol,ethanol and isopropanol with different...Morpho butterfly wings show brilliant blue color,which has a close relationship with the hierarchical micro/nano structures on the surface of scales.When liquids such as methanol,ethanol and isopropanol with different refractive indexes drop onto the scales,the reflectance of wings would decrease.The main peaks of reflectance shift to the right and the scales turn to yel-low-green.After the liquids volatilizes completely,the scales revert to the original blue color.The typical micro/nano struc-tures of Morpho butterfly wing scales are modeled,and the reflectance variation in the course of dropping liquids is simulated.Furthermore,the principal component analysis(PCA) method is employed to analyze the experimental and simulation reflec-tance data,extract principal components and reduce dimensions.As a result,the curves mapping the reflectance variation are clearly shown in the coordinate system consisting of three principal components.The typical color variation of scales during the dropping process could be monitored,and different kinds of liquids could be obviously distinguished according to the dis-tributed regions of mapping points.This study provides guidance to environmental media detecting as well as data processing,and enhances the fabrication and application of the mimic Morpho butterfly wings micro/nano structures.展开更多
This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the...This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the reason of the selective response is that the liquid media forms nanometre-thick films between ridge-lamellae nanostructures and changes the constructive interference wavelength. There is linear relation between the structural color of ridge-lamellae structure and index of liquid background media. The reason of vapor's responses is that the nanometre-thick liquid fi lms on ridge-lamellae nanostructures change the constructive interference wavelength. These liquid films are formed due to vapor adsorption. Therefore,the selective linear liquid response can be applied to design nano-engineered photonic liquid and vapor sensors.展开更多
基金This project is supported by National Natural Science Foundation of China(No.50405033).
文摘The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), in which the pre-whitened based on PCA for observed signals is used, are researched. Aiming at the mixture signals, whose frequency components are overlapped by each other, a simulation of BSS to separate this type of mixture signals by using theory and approach of BSS has been done. The result shows that the BSS has some advantages what the traditional methodology of frequency analysis has not.
基金Funded by the National Natural Science Foundation of China(Nos.51222508 and 51175211)the Science&Technology Research Projects of Hubei Provincial Committee of Education(No.Q20133004)
文摘The laser bonding technology between the Zr41 Ti14 Cu12 Ni10 Be23 bulk metallic glass and zirconium metal was investigated under welding parameters of 1.3 kW and 7 m/min. The welded bead, microstructure, and micro-hardness of the welded joint were examined by Keyence, transmission electron microscopy, scanning electron microscopy, and Vickers hardness, respectively. The experimental results showed that the Zr41 Ti14 Cu12 Ni10 Be2 bulk metallic glass and zirconium metal were successfully bonded together. The Zr41 Ti14 Cu12 Ni10 Be2 in the base material zone maintained amorphous structure, and the welding fusion zone kept the hardness as high as as-received BMG. Therefore, the laser welding technology can be used to achieve successful bonding of bulk metallic glasses and crystallization metal.
基金Funded by the National Natural Science Foundation of China(Nos.51175210 and 51175211)
文摘We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.
基金Funded by the National Natural Science Foundation of China(Nos.51222508,51175211)
文摘We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.
基金National Basic Research Program of China(973 Program,No. 2003CB716207)National Natural Science Foundation of China(No.50775091)
文摘A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.
文摘在熔化极活性气体保护焊(Metal active gas arc welding,MAG)焊接过程中,传统机器视觉熔池检测方法难以适应剧烈变化的强弧光和飞溅等噪声的干扰。为此,提出一种结合GAN与改进PSPNet的熔池深度学习检测方法,实现对熔池的动态跟踪与精准检测。首先,通过生成对抗网络(Generative adversarial networks,GAN)中的解码器、编码器及小步数的反卷积模块,对焊接熔池图像进行增强,解决因强弧光和飞溅等噪声导致的图像模糊。然后,对不同位置的熔池形态进行力学现象分析,得出不同位置的熔池形成规律。最后,结合GAN网络与全位置熔池变化规律,对PSPNet网络进行改进,利用多层金字塔池化模块进行信息提取、空洞卷积大视野的获取全局信息、以及引入的Swish激活函数,对熔池进行动态分割。试验结果表明,该方法平均像素准确率和平均交并比等指标提高至88.03%和85.45%,网络模型训练时间比改进前提升19.05%,能够实现熔池动态跟踪,对机器人智能焊接有重要意义。
基金supported by the National Key Basic Research Special Fund of China(Grant No.2015CB057205)the National Natural Science Foundation of China(Grant Nos.51705203,51775243,51675250)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20160183,BK20160185)the project funded by China Postdoctoral Science Foundation(Grant No.2017M611690)“111” Project(Grant No.B18027)the Open Foundation of State Key Lab of Digital Manufacturing Equipment Technology(Grant No.DMETKF2018022)
文摘Solder bumps realize the mechanical and electrical interconnection between chips and substrates in surface mount components,such as flip chip, wafer level packaging and three-dimensional integration. With the trend to smaller and lighter electronics,solder bumps decrease in dimension and pitch in order to achieve higher I/O density. Automated and nondestructive defect inspection of solder bumps becomes more difficult. Machine learning is a way to recognize the solder bump defects online and overcome the effect caused by the human eye-fatigue. In this paper, we proposed an automated and nondestructive X-ray recognition method for defect inspection of solder bumps. The X-ray system captured the images of the samples and the solder bump images were segmented from the sample images. Seven features including four geometric features, one texture feature and two frequency-domain features were extracted. The ensemble-ELM was established to recognize the defects intelligently. The results demonstrated the high recognition rate compared to the single-ELM. Therefore, this method has high potentiality for automated X-ray recognition of solder bump defects online and reliable.
基金supported by the National Natural Science Foundation of China(Grant Nos.51222508 and 51175210)。
文摘As a century-old concept,superwettability has aroused the interest of researchers in the past decades,attributed to the discoveries of the mechanisms of special wetting phenomena in nature.Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications has become mainstream research,potentially alleviating the problem of water shortage and ice accidents.Superwetting surfaces for fog collection and anti-icing applications involve a reverse process,in which the former gathers water spontaneously,while the latter repels water.Contrastive analysis of the two is essential for the comprehensive understanding of superhydrophilic/superhydrophobic surfaces and boosting their applications.Herein,wetting theories and basic mechanisms for fog collection and anti-icing are briefly introduced.Then,manufacturing methods of bionic structures and surfaces are systematically reviewed after discussing the typical organisms with superwettability.Finally,conclusions are drawn and prospects for future development are proposed.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in UniversityProgram for New Century Excellent Talents in UniversityNational Natural Science Foundation of China(Grant Nos.51305129 and 51222508)
文摘We demonstrated the application of sensors for ethanol gas detection.The ZnO nanowires based sensors with interdigital electrodes were fabricated,and a platform was constructed to test the properties of the sensors.To acquire better response and shorter response/recovery time,the ZnO nanowires were modified with Au.The ethanol gas sensing performance of the pure sensors and those modified with Au nanoparticles were investigated for comparison,and the optimal test temperature of 350℃ was obtained.We found that the response/recovery time for the modified sensor towards 500 ppm of the ethanol gas was reduced by 1.35 and1.42 times compared with the pure sensors,and the sensitivities towards 500 and 10 ppm of the ethanol gas were also increased by 3.18 and 1.35 times,respectively.These proved the enhancement of the Au nanoparticles in the ZnO nanowires based sensors for ethanol gas sensing.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305179&51305177)the Natural Science Foundation of Jiangsu Higher Education Institutions(Grant No.13KJB510009)
文摘Solder bump technology has been widely used in electronic packaging. With the development of solder bumps towards higher density and finer pitch, it is more difficult to inspect the defects of solder bumps as they are hidden in the package. A nondestructive method using the transient active thermography has been proposed to inspect the defects of a solder bump, and we aim at developing an intelligent diagnosis system to eliminate the influence of emissivity unevenness and non-uniform heating on defects recognition in active infrared testing. An improved fuzzy c-means(FCM) algorithm based on the entropy weights is investigated in this paper. The captured thermograms are preprocessed to enhance the thermal contrast between the defective and good bumps. Hot spots corresponding to 16 solder bumps are segmented from the thermal images. The statistical features are calculated and selected appropriately to characterize the status of solder bumps in FCM clustering. The missing bump is identified in the FCM result, which is also validated by the principle component analysis. The intelligent diagnosis system using FCM algorithm with the entropy weights is effective for defects recognition in electronic packages.
基金supported by the National Key Basic Research Special Fund of China (Grant No.2009CB724204)National Natural Science Foundation of China (Grant Nos.90923019,50975106)
文摘Morpho butterfly wings show brilliant blue color,which has a close relationship with the hierarchical micro/nano structures on the surface of scales.When liquids such as methanol,ethanol and isopropanol with different refractive indexes drop onto the scales,the reflectance of wings would decrease.The main peaks of reflectance shift to the right and the scales turn to yel-low-green.After the liquids volatilizes completely,the scales revert to the original blue color.The typical micro/nano struc-tures of Morpho butterfly wing scales are modeled,and the reflectance variation in the course of dropping liquids is simulated.Furthermore,the principal component analysis(PCA) method is employed to analyze the experimental and simulation reflec-tance data,extract principal components and reduce dimensions.As a result,the curves mapping the reflectance variation are clearly shown in the coordinate system consisting of three principal components.The typical color variation of scales during the dropping process could be monitored,and different kinds of liquids could be obviously distinguished according to the dis-tributed regions of mapping points.This study provides guidance to environmental media detecting as well as data processing,and enhances the fabrication and application of the mimic Morpho butterfly wings micro/nano structures.
基金Supported by the National Natural Science Foundation of China(51305129)the Natural Science Foundation of Hubei Province(Q20151411)
文摘This paper investigates the selective liquid response for Morpho didius butterfly wing scales and propose an optical model to explain the effect of different components on the liquid response. It is found out that the reason of the selective response is that the liquid media forms nanometre-thick films between ridge-lamellae nanostructures and changes the constructive interference wavelength. There is linear relation between the structural color of ridge-lamellae structure and index of liquid background media. The reason of vapor's responses is that the nanometre-thick liquid fi lms on ridge-lamellae nanostructures change the constructive interference wavelength. These liquid films are formed due to vapor adsorption. Therefore,the selective linear liquid response can be applied to design nano-engineered photonic liquid and vapor sensors.