As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow f...As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow field caused by the shape of the large blunt cone makes it unstable in transonic and supersonic flight, so its dynamic characteristics need to be analyzed. This paper analyzes the dynamic characteristics of the reentry capsule by computational fluid dynamics(CFD) numerical simulation. The pitching combined dynamic derivative was obtained by simulation of forced pitching oscillation of the flight vehicle using the rigid dynamic grid; the time difference derivative was obtained by simulation of plunging of the flight vehicle using the rigid dynamic grid, too. The direct dynamic derivative was gained by negating the plunging derivative from sum. This paper simulates the pitching and plunging motion of NACA0012 air foil and hypersonic ballistic shape(HBS). The results of the simulation are consistent with the references. The Mars exploration rover entry capsule was simulated and analyzed to ensure a basis for the aerodynamic design and control of the reentry capsule.展开更多
Large lift-to-drag ratio,high maneuverability,and good controllability are the basic performance for flight vehicles.Studying the rolling stability problems of a high lift-to-drag ratio aircraft is of great significan...Large lift-to-drag ratio,high maneuverability,and good controllability are the basic performance for flight vehicles.Studying the rolling stability problems of a high lift-to-drag ratio aircraft is of great significance to the safety and control in maneuvering flight.The research on the static stability in the rolling direction of a HTV-2 like shape under a typical Mach number and attack angle was carried out.Similarly,by using Euler,laminar,turbulence and transition models,investigations of the dynamic stability in a single degree of freedom rolling motion of the same shape structure were executed.The numerical results show that the dynamic derivative of Euler is the largest,and the dynamic derivatives resulting from laminar,turbulence,and transition models are not much different.展开更多
文摘As a main tool for the lunar exploration and Mars landing project, the reentry capsule is responsible for the transportation of personnel and supplies, and it is very important to ensure its safety. The complex flow field caused by the shape of the large blunt cone makes it unstable in transonic and supersonic flight, so its dynamic characteristics need to be analyzed. This paper analyzes the dynamic characteristics of the reentry capsule by computational fluid dynamics(CFD) numerical simulation. The pitching combined dynamic derivative was obtained by simulation of forced pitching oscillation of the flight vehicle using the rigid dynamic grid; the time difference derivative was obtained by simulation of plunging of the flight vehicle using the rigid dynamic grid, too. The direct dynamic derivative was gained by negating the plunging derivative from sum. This paper simulates the pitching and plunging motion of NACA0012 air foil and hypersonic ballistic shape(HBS). The results of the simulation are consistent with the references. The Mars exploration rover entry capsule was simulated and analyzed to ensure a basis for the aerodynamic design and control of the reentry capsule.
文摘Large lift-to-drag ratio,high maneuverability,and good controllability are the basic performance for flight vehicles.Studying the rolling stability problems of a high lift-to-drag ratio aircraft is of great significance to the safety and control in maneuvering flight.The research on the static stability in the rolling direction of a HTV-2 like shape under a typical Mach number and attack angle was carried out.Similarly,by using Euler,laminar,turbulence and transition models,investigations of the dynamic stability in a single degree of freedom rolling motion of the same shape structure were executed.The numerical results show that the dynamic derivative of Euler is the largest,and the dynamic derivatives resulting from laminar,turbulence,and transition models are not much different.