The Ordovician Majiagou Formation is one of the main gas-producing strata in the Ordos Basin,China.The identification of hydrocarbon-bearing intervals via conventional well logs is a challenging task.This study descri...The Ordovician Majiagou Formation is one of the main gas-producing strata in the Ordos Basin,China.The identification of hydrocarbon-bearing intervals via conventional well logs is a challenging task.This study describes the litholog of Ma 5(Member 5 of Majiagou Formation)dolostones,and then analyzes the responses of various conventional well logs to the presences of natural gas.The lithology of the gas bearing layers is dominantly of the dolomicrite to fine to medium crystalline dolomite.Natural gas can be produced from the low resistivity layers,and the dry layers are characterized by high resistivities.Neutron-density crossovers are not sensitive to the presences of natural gas.In addition,there are no significant increases in sonic transit times in natural gas bearing layers.NMR(nuclear magnetic resonance)logs,DSI(Dipole Sonic Imager)logs and borehole image logs(XRMI)are introduced to discriminate the fluid property in Majiagou dolostone reservoirs.The gas bearing intervals have broad NMR T2(transverse relaxation time)spectrum with tail distributions as well as large T2gm(T2 logarithmic mean values)values,and the T2 spectrum commonly display polymodal behaviors.In contrast,the dry layers and water layers have low T2gm values and very narrow T2 spectrum without tails.The gas bearing layers are characterized by low Vp/Vs ratios,low Poisson’s ratios and low P-wave impedances,therefore the fluid property can be discriminated using DSI logs,and the interpretation results show good matches with the gas test data.The apparent formation water resistivity(AFWR)spectrum can be derived from XRMI image logs by using the Archie’s formula in the flushed zone.The gas bearing layers have broad apparent formation water resistivity spectrum and tail distributions compared with the dry and water layers,and also the interpretation results from the image logs exhibit good agreement with the gas test data.The fluid property in Majiagou dolostone reservoirs can be discriminated through NMR logs,DSI logs and borehole image logs.This study helps establish a predictable model for fluid property in dolostones,and have implications in dolostone reservoirs with similar geological backgrounds worldwide.展开更多
Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an...Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.展开更多
基金This work is financially supported by the Science Foundation of China University of Petroleum, Beijing (Grant No. 2462017YJRC023)the Fundamental Research Funds for the Central Universities and the Opening Fund of Key Laboratory of Deep Oil & Gas (Grant No. 20CX02116A)
文摘The Ordovician Majiagou Formation is one of the main gas-producing strata in the Ordos Basin,China.The identification of hydrocarbon-bearing intervals via conventional well logs is a challenging task.This study describes the litholog of Ma 5(Member 5 of Majiagou Formation)dolostones,and then analyzes the responses of various conventional well logs to the presences of natural gas.The lithology of the gas bearing layers is dominantly of the dolomicrite to fine to medium crystalline dolomite.Natural gas can be produced from the low resistivity layers,and the dry layers are characterized by high resistivities.Neutron-density crossovers are not sensitive to the presences of natural gas.In addition,there are no significant increases in sonic transit times in natural gas bearing layers.NMR(nuclear magnetic resonance)logs,DSI(Dipole Sonic Imager)logs and borehole image logs(XRMI)are introduced to discriminate the fluid property in Majiagou dolostone reservoirs.The gas bearing intervals have broad NMR T2(transverse relaxation time)spectrum with tail distributions as well as large T2gm(T2 logarithmic mean values)values,and the T2 spectrum commonly display polymodal behaviors.In contrast,the dry layers and water layers have low T2gm values and very narrow T2 spectrum without tails.The gas bearing layers are characterized by low Vp/Vs ratios,low Poisson’s ratios and low P-wave impedances,therefore the fluid property can be discriminated using DSI logs,and the interpretation results show good matches with the gas test data.The apparent formation water resistivity(AFWR)spectrum can be derived from XRMI image logs by using the Archie’s formula in the flushed zone.The gas bearing layers have broad apparent formation water resistivity spectrum and tail distributions compared with the dry and water layers,and also the interpretation results from the image logs exhibit good agreement with the gas test data.The fluid property in Majiagou dolostone reservoirs can be discriminated through NMR logs,DSI logs and borehole image logs.This study helps establish a predictable model for fluid property in dolostones,and have implications in dolostone reservoirs with similar geological backgrounds worldwide.
基金sponsored by the Science Research and Technology Development Project of Petrochina Company Limited "Well Logging Interpretation and Integrative Evaluation of the Complex Lithology"(Grant No.2008A-2705)
文摘Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.