Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and lightenergy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones ...Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and lightenergy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.展开更多
Goodness of fit is demonstrated for theoretical calculation of z-scan data based on beams propagating in the nonlinear medium and the Fresnel–Kirchhoff diffraction integral in experiments with high nonlinear refracti...Goodness of fit is demonstrated for theoretical calculation of z-scan data based on beams propagating in the nonlinear medium and the Fresnel–Kirchhoff diffraction integral in experiments with high nonlinear refraction and absorption. The constancy of nonlinear optical parameters is achieved regardless of sample thickness and laser intensity, which clarifies the physical significance of optical parameters. We have obtained γ = 2.0 × 10-19 m2/W and β = 5.0 × 10-13 m/W for carbon disulfide excited by a pulsed laser at 800 nm with pulse duration of 35 fs,which are independent of sample thickness and laser intensity. Affirming constancy of the extracted parameters to the incident light intensity may become a practice to verify the goodness of the z-scan experiment.展开更多
基金National Natural Science Foundation of China(NSFC)(61675171,61675169,61522507)Fundamental Research Funds for the Central Universities of China(3102017HQZZ022,3102017zy021)Shaanxi Provincical Key R&D Program(2018KW-009)
文摘Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and lightenergy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.91950207,61675171 and 61675169)the Shaanxi Provincial Key R&D Program(No.2018KW-009)the Fundamental Research Funds for the Central Universities(Nos.3102017HQZZ022 and 3102017zy021)
文摘Goodness of fit is demonstrated for theoretical calculation of z-scan data based on beams propagating in the nonlinear medium and the Fresnel–Kirchhoff diffraction integral in experiments with high nonlinear refraction and absorption. The constancy of nonlinear optical parameters is achieved regardless of sample thickness and laser intensity, which clarifies the physical significance of optical parameters. We have obtained γ = 2.0 × 10-19 m2/W and β = 5.0 × 10-13 m/W for carbon disulfide excited by a pulsed laser at 800 nm with pulse duration of 35 fs,which are independent of sample thickness and laser intensity. Affirming constancy of the extracted parameters to the incident light intensity may become a practice to verify the goodness of the z-scan experiment.