期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting
1
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan shizhong yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
Advances in the Application of Perovskite Materials 被引量:3
2
作者 Lixiu Zhang Luyao Mei +37 位作者 Kaiyang Wang Yinhua Lv Shuai Zhang Yaxiao Lian Xiaoke Liu Zhiwei Ma Guanjun Xiao Qiang Liu Shuaibo Zhai Shengli Zhang Gengling Liu Ligang Yuan Bingbing Guo Ziming Chen Keyu Wei Aqiang Liu shizhong yue Guangda Niu Xiyan Pan Jie Sun Yong Hua Wu‑Qiang Wu Dawei Di Baodan Zhao Jianjun Tian Zhijie Wang Yang Yang Liang Chu Mingjian Yuan Haibo Zeng Hin‑Lap Yip Keyou Yan Wentao Xu Lu Zhu Wenhua Zhang Guichuan Xing Feng Gao Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期334-381,共48页
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allo... Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices. 展开更多
关键词 Perovskites Optoelectronic devices Neuromorphic devices Pressure-induced emission
下载PDF
State-of-the-art advances in vacancy defect engineering of graphitic carbon nitride for solar water splitting
3
作者 Jie Li Kaige Huang +11 位作者 Yanbin Huang Yumin Ye Marcin Ziółek Zhijie Wang shizhong yue Mengmeng Ma Jun Liu Kong Liu Shengchun Qu Zhi Zhao Yanjun Zhang Zhanguo Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期16-34,共19页
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride... Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4). 展开更多
关键词 g-C_(3)N_(4) vacancy defect water splitting PHOTOCATALYST charge carrier
下载PDF
Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells
4
作者 Qicong Li shizhong yue +7 位作者 Zhitao Huang Chao Li Jiaqian Sun Keqian Dong Zhijie Wang Kong Liu Shengchun Qu Yong Lei 《Nano Research Energy》 2024年第1期30-37,共8页
In organic solar cells,the singlet and triplet excitons dissociate into free charge carriers with different mechanisms due to their opposite spin state.Therefore,the ratio of the singlet and triplet excitons directly ... In organic solar cells,the singlet and triplet excitons dissociate into free charge carriers with different mechanisms due to their opposite spin state.Therefore,the ratio of the singlet and triplet excitons directly affects the photocurrent.Many methods were used to optimize the performance of the low-efficiency solar cell by improving the ratio of triplet excitons,which shows a long diffusion length.Here we observed that in high-efficiency systems,the proportion of singlet excitons under linearly polarized light excitation is higher than that of circularly polarized light.Since the singlet charge transfer state has lower binding energy than the triplet state,it makes a significant contribution to the charge carrier generation and enhancement of the photocurrent.Further,the positive magnetic field effect reflects that singlet excitons dissociation plays a major role in the photocurrent,which is opposite to the case of low-efficiency devices where triplet excitons dominate the photocurrent. 展开更多
关键词 polarized light organic solar cell high efficiency singlet/triplet exciton
原文传递
Submicrometer optical frequency combs based on SPPs metallic multi-ring resonators
5
作者 ZHITAO HUANG FANGYUAN MA +12 位作者 KEQIAN DONG shizhong yue CHAO LI YULIN WU JUNHUI HUANG XU HAN JIAQIAN SUN ZHAOFENG LI KONG LIU ZHIJIE WANG YONG LEI SHENGCHUN QU ZHANGUO WANG 《Photonics Research》 SCIE EI CAS CSCD 2023年第12期2105-2112,共8页
Optical frequency combs(OFCs)have great potential in communications,especially in dense wavelength-division multiplexing.However,the size of traditional OFCs based on conventional optical microcavities or dispersion f... Optical frequency combs(OFCs)have great potential in communications,especially in dense wavelength-division multiplexing.However,the size of traditional OFCs based on conventional optical microcavities or dispersion fibers is at least tens of micrometers,far larger than that of nanoscale electronic chips.Therefore,reducing the size of OFCs to match electronic chips is of necessity.Here,for the first time to our knowledge,we introduce surface plasmon polaritons(SPPs)to the construction of OFCs to realize a miniature device.The thickness of our device is reduced below 1μm.Though the presence of SPPs may induce ohmic and scattering loss,the threshold of the device is obtained as 9μW,comparable to the conventional device.Interestingly,the response time is 13.2 ps,much faster than the optical counterparts.This work provides a feasible strategy for the miniaturization of OFCs. 展开更多
关键词 METALLIC FASTER feasible
原文传递
Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China
6
作者 Kun Wang Yuhui Qiao +4 位作者 Huiqi Zhang shizhong yue Huafen Li Xionghui Ji Longsheng Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第11期127-137,共11页
Earthworms have the ability to accumulate of heavy metals, however, there was few studies that addressed the metals in earthworm at subcellular levels in fields. The distributions of metals (Cd, Cu, Zn, and Pb) in s... Earthworms have the ability to accumulate of heavy metals, however, there was few studies that addressed the metals in earthworm at subcellular levels in fields. The distributions of metals (Cd, Cu, Zn, and Pb) in subcellular fractions (cytosol, debris, and granules) of earthworm Metaphire californica were investigated. The relationship between soil metals and earthworms were analyzed to explain its high plasticity to inhabit in situ contaminated soil of Hunan Province, south China. The concentration of Cd in subcellular compartments showed the same pattern as Cu in the order of cytosol 〉 debris 〉 granules. The distribution of Zn and Pb in earthworms indicated a similar propensity for different subcellular fractions that ranked as granules 〉 debris 〉 cytosol for Zn, and granules 〉 cytosol 〉 debris for Pb. The internal metal concentrations in earthworms increased with the soil metals (p 〈 0.05). Significant positive correlations were found between soil Cd and Cd concentrations in cytosol and debris (p 〈 0.01). Moreover, the soil Pb concentration significantly influenced the Pb concentrations in cytosol and debris (p 〈 0.01), similar to that of Cd. The soil Cu concentrations was only associated with the Cu in granules (p 〈 0.05). Soil Zn concentrations correlated with the Zn concentrations in each subcellular fraction (p 〈 0.05). Our results provide insights into the variations of metals partitioning in earthworms at subcellular levels and the relationships of soil metals, which could be one of the detoxiflcation strategies to adapt the long-term contaminated environment. 展开更多
关键词 Heavy metals Metaphire californica Subcellular fractions South China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部